Citation: Li Man, Kang Huiying, Xue Xiao-Song, Cheng Jin-Pei. Computational Study of the Trifluoromethyl Radical Donor Abilities of CF3 Sources[J]. Acta Chimica Sinica, ;2018, 76(12): 988-996. doi: 10.6023/A18080334 shu

Computational Study of the Trifluoromethyl Radical Donor Abilities of CF3 Sources

  • Corresponding author: Xue Xiao-Song, xuexs@nankai.edu.cn
  • Received Date: 14 August 2018
    Available Online: 8 December 2018

    Fund Project: the State Key Laboratory on Elemento-Organic Chemistry  the Fundamental Research Funds for the Central Universities  the National Natural Science Foundation of China 21390400Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)  the National Natural Science Foundation of China 21772098Project supported by the National Natural Science Foundation of China (Nos. 21772098, 21390400), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), the State Key Laboratory on Elemento-Organic Chemistry, and the Fundamental Research Funds for the Central Universities

Figures(9)

  • Organic compounds containing trifluoromethyl (CF3) group(s) are widely prevalent in biochemical and medicinal science. This is mainly due to the fact that the trifluoromethyl group often improves the metabolic stability and lipophilicity of biologically active compounds. The need of efficient methods for the incorporation of this group into target molecules has spurred research to discover new, practical CF3 sources. Among various CF3 sources, the radical trifluoromethylating reagents has provided a strong driving force for the discovery of the novel trifluoromethylation reactions, and contributed enormously to the efficient synthesis of various CF3-containing compounds. Although a wide variety of radical CF3 sources are now available to organic chemists, little attention has been paid to assess their trifluoromethyl radical donor abilities (TR·DA). Moreover, the available radical reagents show a very rich and diverse reactivity. The establishment of an extensive scale to quantify their CF3 radical donating abilities should be of great value for both the rational design of novel reagents and the judicious selection of appropriate reagent to explore new radical reactions. Herein, we present a systematic computational study of the homolytic X―CF3 bond dissociation enthalpies of 35 radical trifluoromethylating reagents by using the SMD-M06-2X/[6-311++G(2df, 2p)-Def2-QZVPPD]//SMD-M06-2X/[6-31+G(d)-LANL2DZ] method, aiming to provide an energetic guide for estimating their trifluoromethyl radical donor abilities. A comprehensive TR·DA scale was constructed, which covers a range from -21.5 to 95.2 kcal·mol-1. The effects of the frequently used activators including single electron transfer reagents and halogen/chalcogen-bond donors on trifluoromethyl radical donor abilities were investigated. The results show that single electron transfer is the most efficient way to promote the CF3 radical release. We expect that the results of this study could be highly valuable for the mechanistic understanding and the rational design of novel CF3 sources and new radical trifluoromethylation reactions.
  • 加载中
    1. [1]

      (a) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525. (b) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973, 16, 1207. (c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.

    2. [2]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Ace a, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    3. [3]

      Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, Germany, 2013

    4. [4]

      (a) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536. (b) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513. (c) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731. (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765. (e) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.

    5. [5]

      (a) Wang, X.; Zhang, Y.; Wang, J.-B. Sci. Sin. Chim. 2012, 42, 1417(in Chinese). (王兮, 张艳, 王剑波, 中国科学: 化学, 2012, 42, 1417.) (b) Pan, F.; Shi, Z. Acta Chim. Sinica 2012, 70, 1679. (潘菲, 施章杰, 化学学报, 2012, 70, 1679.) (c) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815(in Chinese). (卿凤翎, 有机化学, 2012, 32, 815.) (d) Zeng, W.; Chen F. Chin. J. Appl. Chem. 2014, 31, 627(in Chinese). (曾薇, 陈甫雪, 应用化学, 2014, 31, 627.) (e) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975. (f) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese). (惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2017, 37, 3060.) (g) Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66(in Chinese). (苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.) (h) Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P. Green Chem. 2018, 20, 1662.

    6. [6]

      (a) Dolbier, W. R. Chem. Rev. 1996, 96, 1557. (b) Studer, A. Angew. Chem. Int. Ed. 2012, 51, 8950.

    7. [7]

      (a) Haszeldine, R. N. J. Chem. Soc. 1949, 2856. (b) Scherer, K. V.; Ono, T.; Yamanouchi, K.; Fernandez, R.; Henderson, P. J. Am. Chem. Soc. 1985, 107, 718. (c) Umemoto, T.; Ando, A. Bull. Chem. Soc. Jpn. 1986, 59, 447. (d) Sawada, H.; Nakayama, M.; Yoshida, M.; Yoshida, T.; Kamigata, N. J. Fluorine Chem. 1990, 46, 423. (e) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett. 1991, 32, 7525. (f) Bertrand, F.; Pevere, V.; Quiclet-Sire, B.; Zard, S. Z. Org. Lett. 2001, 3, 1069. (g) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95. (h) Sato, A.; Han, J.; Ono, T.; Wzorek, A.; Acena, J. L.; Soloshonok, V. A. Chem. Commun. 2015, 51, 5967. (i) Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem. Int. Ed. 2016, 55, 2743. (j) Liu, P.; Liu, W.; Li, C. J. J. Am. Chem. Soc. 2017, 139, 14315. (k) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese). (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.) (l) Daniel, M.; Dagousset, G.; Diter, P.; Klein, P. A.; Tuccio, B.; Goncalves, A. M.; Masson, G.; Magnier, E. Angew. Chem. Int. Ed. 2017, 56, 1. (m) Ouyang, Y.; Xu, X. H.; Qing, F. L. Angew. Chem. Int. Ed. 2018, 57, 6926. (n) Yang, B.; Yu, D.; Xu, X.-H.; Qing, F.-L. ACS Catal. 2018, 2839. (o) Liu, Y.; Shao, X.; Zhang, P.; Lu, L.; Shen, Q. Org. Lett. 2015, 17, 2752.

    8. [8]

      (a) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Acc. Chem. Res. 2016, 49, 2284. (b) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937. (c) Cho, E. J. Chem. Rec. 2016, 16, 47. (d) Zeng, T.; Xuan, J.; Chen, J.; Lu, L.; Xiao, W. Imag. Sci. Photochem. 2014, 32, 415(in Chinese). (曾婷婷, 宣俊, 陈加荣, 陆良秋, 肖文精, 影像科学与光化学, 2014, 32, 415.)

    9. [9]

      (a) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585. (b) Koike, T.; Akita, M. J. Fluorine Chem. 2014, 167, 30. (c) Wang, S.-M.; Han, J.-B.; Zhang, C.-P.; Qin, H.-L.; Xiao, J.-C. Tetrahedron 2015, 71, 7949. (d) Prieto, A.; Baudoin, O.; Bouyssi, D.; Monteiro, N. Chem. Commun. 2016, 52, 869. (e) Ling, L.; Liu, K.; Li, X.; Li, Y. ACS Catal. 2015, 5, 2458. (f) He, X.; Shan, C.; Qi, X.; Bai, R.; Lan, Y. Sci. Sin. Chim. 2017, 47, 859(in Chinese). (何晓倩, 单春晖, 戚孝天, 白若鹏, 蓝宇, 中国科学: 化学, 2017, 47, 859.) (g) Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Lan, Y.; Yu, D.-G. ACS Catal. 2017, 7, 8324.; (h) Zhu, L.; Ye, J.-H.; Duan, M.; Qi, X.; Yu, D.-G.; Bai, R.; Lan, Y. Org. Chem. Front. 2018, 5, 633.

    10. [10]

      (a) Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem. Soc. Rev. 2013, 42, 1667. (b) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478.

    11. [11]

      (a) Mulliken, R. S. J. Am. Chem. Soc. 1950, 72, 600. (b) Rosokha, S. V.; Kochi, J. K. Acc. Chem. Res. 2008, 41, 641. (c) Lima, C. G. S.; Lima, T. d. M.; Duarte, M.; Jurberg, I. D.; Paixã o, M. W. ACS Catal. 2016, 6, 1389. (e) Postigo, A. Eur. J. Org. Chem. 2018, https://doi.org/10.1002/ejoc.201801079.

    12. [12]

      Sladojevich, F.; McNeill, E.; Börgel, J.; Zheng, S.-L.; Ritter, T. Angew. Chem. Int. Ed. 2015, 54, 3712.  doi: 10.1002/anie.201410954

    13. [13]

      (a) Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Org. Lett. 2016, 18, 4638. (b) Sun, X.; Wang, W.; Ma, J.; Yu, S. Acta Chim. Sinica 2017, 75, 115(in Chinese). (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报, 2017, 75, 115.) (c) Sun, X.; He, Y.; Yu, S. J. Photochem. Photobiol., A 2018, 355, 326.

    14. [14]

      Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442.  doi: 10.1021/acs.orglett.7b00375

    15. [15]

      (a) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962. (b) Jiang, H.; He, Y.; Cheng, Y.; Yu, S. Org. Lett. 2017, 19, 1240.

    16. [16]

      Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Chem. Eur. J. 2015, 21, 8355.  doi: 10.1002/chem.v21.23

    17. [17]

      (a) Jiang, Y. Y.; Yu, H. Z.; Fu, Y.; Liu, L. Sci. China Chem. 2015, 58, 673. (b) Mizuta, S.; Verhoog, S.; Wang, X.; Shibata, N.; Gouverneur, V.; Meciebielle, M. J. Fluorine Chem. 2013, 155, 124. (c) Li, M.; Wang, Y.; Xue, X. S.; Cheng, J. P. Asian J. Org. Chem. 2017, 6, 235.

    18. [18]

      (a) Li, M.; Guo, J.; Xue, X. S.; Cheng, J. P. Org. Lett. 2016, 18, 264. (b) Li, M.; Xue, X. S.; Guo, J.; Wang, Y.; Cheng, J. P. J. Org. Chem. 2016, 81, 3119. (c) Xue, X. S.; Wang, Y.; Li, M.; Cheng, J. P. J. Org. Chem. 2016, 81, 4280. (d) Yan, T.; Zhou, B.; Xue, X. S.; Cheng, J. P. J. Org. Chem. 2016, 81, 9006. (e) Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem 2016, 81, 7486. (f) Zhou, B.; Yan, T.; Xue, X. S.; Cheng, J. P. Org. Lett. 2016, 18, 6128. (g) Li, M.; Xue, X.-S.; Cheng, J.-P. ACS Catal. 2017, 7, 7977. (h) Li, M.; Zhou, B.; Xue, X.-S.; Cheng, J.-P. J. Org. Chem. 2017, 82, 8697. (i) Yang, J. D.; Wang, Y.; Xue, X. S.; Cheng, J. P. J. Org. Chem. 2017, 82, 4129. (j) Zhou, B.; Xue, X. S.; Cheng, J. P. Tetrahedron Lett. 2017, 58, 1287. (k) Li, M.; Sang, Y.; Xue, X.-S.; Cheng, J.-P. J. Org. Chem. 2018, 83, 3333. (l) Li, M.; Zheng, H.; Xue, X.-S.; Cheng, J.-P. Tetrahedron Lett. 2018, 59, 1278. (m) Zhang, J.; Yang, J.-D.; Zheng, H.; Xue, X.-S.; Mayr, H.; Cheng, J.-P. Angew. Chem. Int. Ed. 2018, 57, 12690.

    19. [19]

      (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. (b) Klippenstein, S. J.; Pande, V. S.; Truhlar, D. G. J. Am. Chem. Soc. 2014, 136, 528.

    20. [20]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.  doi: 10.1021/jp810292n

    21. [21]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., J. E. P.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT, 2013.

    22. [22]

      Naumann, D.; Wilkes, B.; Kischkewitz, J. J. Fluorine Chem. 1985, 30, 73.  doi: 10.1016/S0022-1139(00)80523-0

    23. [23]

      Naumann, D.; Kischkewitz, J. J. Fluorine Chem. 1990, 46, 265.  doi: 10.1016/S0022-1139(00)80995-1

    24. [24]

      Haszeldine, R. N. J. Chem. Soc. 1949, 2856.  doi: 10.1039/jr9490002856

    25. [25]

      Stefani, A. P.; Herk, L.; Szwarc, M. J. Am. Chem. Soc. 1961, 83, 4732.  doi: 10.1021/ja01484a010

    26. [26]

      Akiyama, T.; Kato, K.; Kajitani, M.; Sakaguchi, Y.; Nakamura, J.; Hayashi, H.; Sugimori, A. Bull. Chem. Soc. Jpn. 1988, 61, 3531.  doi: 10.1246/bcsj.61.3531

    27. [27]

      Sangster, J. M.; Thynne, J. C. J. J. Phys. Chem. 1969, 73, 2746.  doi: 10.1021/j100842a049

    28. [28]

      Kamigata, N.; Fukushima, T.; Yoshida, M. J. Chem. Soc., Chem. Commun. 1989, 1559.
       

    29. [29]

      Hu, L.-Q.; Huang, W.-Y. Chin. J. Chem. 1989, 9, 498(in Chinese).

    30. [30]

      Billard, T.; Roques, N.; Langlois, B. R. J. Org. Chem. 1999, 64, 3813.  doi: 10.1021/jo980649a

    31. [31]

      Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 4486.
       

    32. [32]

      Lai, C.; Mallouk, T. E. J. Chem. Soc., Chem. Commun. 1993, 1359.
       

    33. [33]

      Shi, G.; Shao, C.; Pan, S.; Yu, J.; Zhang, Y. Org. Lett. 2015, 17, 38.  doi: 10.1021/ol503189j

    34. [34]

      Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. Nat. Commun. 2015, 6, 1.  doi: 10.1080/0976691X.2015.11884842

    35. [35]

      Kawamura, S.; Sodeoka, M. Angew. Chem. Int. Ed. 2016, 55, 8740.  doi: 10.1002/anie.201604127

    36. [36]

      Billard, T.; Roques, N.; Langlois, B. R. Tetrahedron Lett. 2000, 41, 3069.  doi: 10.1016/S0040-4039(00)00337-3

    37. [37]

      Umemoto, T. J. Fluorine Chem. 2014, 167, 3.  doi: 10.1016/j.jfluchem.2014.07.029

    38. [38]

      (a) Gleiter, R.; Haberhauer, G.; Werz, D. B.; Rominger, F.; Bleiholder, C. Chem. Rev. 2018, 118, 2010. (b) Vogel, L.; Wonner, P.; Huber, S. M. Angew. Chem. Int. Ed. 2018, DOI: 10.1002/anie.201809432.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    20. [20]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

Metrics
  • PDF Downloads(64)
  • Abstract views(2071)
  • HTML views(396)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return