Citation: Zhang Zhiqi, Ge Chengxuan, Chen Yugang, Wu Qiang, Yang Lijun, Wang Xizhang, Hu Zheng. Construction of Cobalt/Nitrogen/Carbon Electrocatalysts with Highly Exposed Active Sites for Oxygen Reduction Reaction[J]. Acta Chimica Sinica, ;2019, 77(1): 60-65. doi: 10.6023/A18080323 shu

Construction of Cobalt/Nitrogen/Carbon Electrocatalysts with Highly Exposed Active Sites for Oxygen Reduction Reaction

  • Corresponding author: Wu Qiang, wqchem@nju.edu.cn
  • Received Date: 7 August 2018
    Available Online: 7 January 2018

    Fund Project: National Natural Science Foundation of China 21473089National Natural Science Foundation of China 51571110Project supported by the National Key Research and Development Program of China (No. 2017YFA0206500), National Natural Science Foundation of China (Nos. 21773111, 21473089, 51571110, 21573107), Changzhou Technology Support Program (No. CE20130032), Priority Academic Program Development of Jiangsu Higher Education Institution, and Fundamental Research Funds for the Central Universitiesthe National Key Research and Development Program of China 2017YFA0206500National Natural Science Foundation of China 21773111National Natural Science Foundation of China 21573107Changzhou Technology Support Program CE20130032

Figures(5)

  • The ever-growing crises of fossil fuel shortage and environmental pollution urgently call for the exploration of clean and renewable energies. Fuel cells present high power efficiency and emit zero pollutants, showing great potential in the future energy system. The main bottleneck of fuel cell commercialization is the sluggish oxygen reduction reaction (ORR) at the cathode. To date, the most active electrocatalysts for ORR are platinum and its alloys. However, the scarcity, high cost and susceptibility to methanol crossover of precious metals hinder the large-scale application of fuel cells. The development of highly efficient and stable non-precious metal ORR electrocatalysts with high resistance to methanol crossover is of great significance. M/N/C (M=Fe, Co, etc.) catalysts are attractive non-precious metal based ORR electrocatalysts and their performance depends on the density of active sites on the catalyst surface. The common synthesis of M/N/C catalysts is to pyrolyze the mixture of metal salt, nitrogen-containing precursor and carbon support. However, so-synthesized catalysts usually contain large metal-based particles, leading to the shortcomings of low density and partial embedding of active sites. Graphitic carbon nitride (g-C3N4) with high concentration of pyridine-like nitrogen in heptazine heterorings can provide abundant and uniform nitrogen coordination sites, which can capture metal ions by the interaction between metal ions and N sites. In addition, g-C3N4 would be decomposed largely during pyrolysis, which is beneficial to form highly exposed M/N/C active sites by pyrolyzing the g-C3N4 with adsorbed metal ions. Herein, we reported the construction of Co/N/C electrocatalysts with highly exposed active sites. Specifically, the g-C3N4 was uniformly supported on the surface of high-conductive hierarchical carbon nanocages (hCNC) by the impregnation and pyrolysis process, leading to the formation of g-C3N4/hCNC composite. Co2+ ions were then captured by the g-C3N4 species on the surface owing to the interaction between the lone pair electrons of nitrogen and the Co2+ ions, and the subsequent pyrolysis led to the Co/N/C catalysts with highly exposed active sites, high conductivity and multiscale pore structure. The optimized catalyst obtained at 800℃ exhibits excellent ORR performance in alkaline medium, with a high onset potential (0.97 V) comparable to commercial Pt/C catalyst, while much better stability and high immunity to methanol crossover. This study demonstrates an effective strategy for the construction of high-efficient M/N/C catalysts with highly exposed active sites.
  • 加载中
    1. [1]

      Gewirth, A. A.; Thorum, M. S. Inorg. Chem. 2010, 49, 3557.  doi: 10.1021/ic9022486

    2. [2]

      Zhong, C.-J.; Luo, J.; Njoki, P. N.; Mott, D.; Wanjala, B.; Loukrakpam, R.; Lim, S.; Wang, L.; Fang, B.; Xu, Z. Energy Environ. Sci. 2008, 1, 454.  doi: 10.1039/b810734n

    3. [3]

      Debe, M. K. Nature 2012, 486, 43.  doi: 10.1038/nature11115

    4. [4]

      Gasteiger, H. A.; Marković, N. M. Science 2009, 324, 48.  doi: 10.1126/science.1172083

    5. [5]

      Zhong, G.; Wang, H.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943 (in Chinese).
       

    6. [6]

      Sun, T.; Wu, Q.; Zhuo, O.; Jiang, Y.; Bu, Y.; Yang, L.; Wang, X.; Hu, Z. Nanoscale 2016, 8, 8480.  doi: 10.1039/C6NR00760K

    7. [7]

      Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443.  doi: 10.1126/science.1200832

    8. [8]

      Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Adv. Mater. 2015, 27, 2521.  doi: 10.1002/adma.201500262

    9. [9]

      Wu, G.; Zelenay, P. Acc. Chem. Res. 2013, 46, 1878.  doi: 10.1021/ar400011z

    10. [10]

      Antolini, E. Appl. Catal., B: Environ. 2009, 88, 1.  doi: 10.1016/j.apcatb.2008.09.030

    11. [11]

      Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Adv. Mater. 2014, 26, 6074.  doi: 10.1002/adma.201401848

    12. [12]

      Yue, B.; Ma, Y.; Tao, H.; Yu, L.; Jian, G.; Wang, X.; Wang, X.; Lu, Y.; Hu, Z. J. Mater. Chem. 2008, 18, 1747.  doi: 10.1039/b718283j

    13. [13]

      Feng, H.; Ma, J.; Hu, Z. J. Mater. Chem. 2010, 20, 1702.  doi: 10.1039/b915667d

    14. [14]

      Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S.-Z. J. Am. Chem. Soc. 2017, 139, 3336.
       

    15. [15]

      Qing, H.; Zhihua, C.; Jian, G.; Yang, Z.; Zhipan, Z.; Liming, D.; Liangti, Q. Adv. Funct. Mater. 2017, 27, 1606352.  doi: 10.1002/adfm.v27.15

    16. [16]

      Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. Angew. Chem. Int. Ed. 2015, 54, 11265.  doi: 10.1002/anie.201505073

    17. [17]

      Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Adv. Mater. 2016, 28, 2427.  doi: 10.1002/adma.201505281

    18. [18]

      Liu, Q.; Zhang, J. Langmuir 2013, 29, 3821.  doi: 10.1021/la400003h

    19. [19]

      Yu, Q.; Xu, J.; Wu, C.; Guan, L. RSC Adv. 2015, 5, 65303.  doi: 10.1039/C5RA11397K

    20. [20]

      Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S. Z. Nat. Commun. 2014, 5, 3783.  doi: 10.1038/ncomms4783

    21. [21]

      Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. ACS Nano 2015, 9, 931.  doi: 10.1021/nn506701x

    22. [22]

      Ji, L.; Yao, Z.; Jun, C.; Jian, L.; Denisa, H.-J.; Mietek, J.; Zhang, Q. S. Angew. Chem. Int. Ed. 2012, 51, 3892.  doi: 10.1002/anie.v51.16

    23. [23]

      Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.; Zhang, W.; Zhu, Z.; Smith, S. C.; Jaroniec, M.; Lu, G. Q.; Qiao, S. Z. J. Am. Chem. Soc. 2011, 133, 20116.  doi: 10.1021/ja209206c

    24. [24]

      Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.  doi: 10.1021/acs.accounts.6b00541

    25. [25]

      Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. ACS Catal. 2015, 5, 1857.  doi: 10.1021/cs502029h

    26. [26]

      Lyu, Z.; Xu, D.; Yang, L.; Che, R.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X.; Hu, Z. Nano Energy 2015, 12, 657.  doi: 10.1016/j.nanoen.2015.01.033

    27. [27]

      Bu, Y.; Sun, T.; Cai, Y.; Du, L.; Zhuo, O.; Yang, L.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2017, 29, 1700470.  doi: 10.1002/adma.201700470

    28. [28]

      Wang, L. W.; Feng, R.; Xia, J. Z.; Chen, S.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 1070 (in Chinese).
       

    29. [29]

      Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Adv. Mater. 2009, 21, 1609.  doi: 10.1002/adma.v21:16

    30. [30]

      Zou, X.; Su, J.; Silva, R.; Goswami, A.; Sathe, B. R.; Asefa, T. Chem. Commun. 2013, 49, 7522.  doi: 10.1039/c3cc42891e

    31. [31]

      Niu, K.; Yang, B.; Cui, J.; Jin, J.; Fu, X.; Zhao, Q.; Zhang, J. J. Power Sources 2013, 243, 65.  doi: 10.1016/j.jpowsour.2013.06.007

    32. [32]

      Kuang, M.; Wang, Q.; Han, P.; Zheng, G. Adv. Energy Mater. 2017, 7, 1700193.  doi: 10.1002/aenm.201700193

    33. [33]

      Zhao, J.; Lai, H.; Lyu, Z.; Jiang, Y.; Xie, K.; Wang, X.; Wu, Q.; Yang, L.; Jin, Z.; Ma, Y.; Liu, J.; Hu, Z. Adv. Mater. 2015, 27, 3541.  doi: 10.1002/adma.v27.23

    34. [34]

      Fei, H.; Dong, J.; Arellano-Jiménez, M. J.; Ye, G.; Kim, N. D.; Samuel, E. L. G.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J.; Yacaman, M. J.; Ajayan, P. M.; Chen, D.; Tour, J. M. Nat. Commun. 2015, 6, 8668.  doi: 10.1038/ncomms9668

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(21)
  • Abstract views(1813)
  • HTML views(460)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return