Citation: An Lun, Tong Feifei, Zhang Xingang. Iron-Catalyzed Cross-Coupling of Diarylzinc or Aryl Grignard Reagents with Difluoroalkyl Bromides[J]. Acta Chimica Sinica, ;2018, 76(12): 977-982. doi: 10.6023/A18080314 shu

Iron-Catalyzed Cross-Coupling of Diarylzinc or Aryl Grignard Reagents with Difluoroalkyl Bromides

  • Corresponding author: Zhang Xingang, xgzhang@sioc.ac.cn
  • Received Date: 18 September 2018
    Available Online: 11 December 2018

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21332010the National Natural Science Foundation of China 21425208Project supported by the National Basic Research Program of China (973 Program) (No. 2015CB931900), the National Natural Science Foundation of China (Nos. 21425208, 21672238, 21332010 and 21421002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)the National Natural Science Foundation of China 21421002the National Natural Science Foundation of China 21672238the National Basic Research Program of China (973 Program) 2015CB931900

Figures(5)

  • The demanding of discovering new pharmaceuticals, agrochemicals and advanced functional materials have triggered extensive efforts on efficient synthesis of fluorinated compounds. Over the past decade, the transition-metal-catalyzed fluoroalkylation has emerged as an efficient and straightforward strategy for the synthesis of organofluorine compounds. Despite the importance of the reported synthetic methods, the development of environmentally benign and cost-efficient fluoroalkylation reactions with base metals as catalysis and widely available fluoroalkyl halides as fluoroalkyl sources continues to attract great interest. Here, we reported the first example of iron-catalyzed cross-coupling of diarylzinc reagents with gem-difluoropropargyl bromides. The reaction proceeds under mild reaction conditions and provides a facile access to gem-difluoropropargyl arenes. Additionally, this iron-catalytic system can also be applied to the cross-coupling of aryl Grignard reagents with difluoroalkyl bromides. Applications of the method led to modified bioactive molecules efficiently, offering potential opportunities in medicinal chemistry. Preliminary mechanistic studies reveal that a single electron transfer pathway is involved in the reaction. A representative procedure for iron-catalyzed cross-coupling of diarylzincs with gem-difluoropropargyl bromide is as following: Fe(acac)3 (10 mol%) was added to a 25 mL of Schlenck tube, the tube was then evacuated and backfilled with Ar (3 times). gem-Difluoropropargyl bromide 2 (0.3 mmol, 1.0 equiv.), TMEDA (0.45 mmol, 1.5 equiv.) and THF (1 mL) were then added, the reaction mixture was stirred at room temperature for 10 min and cooled to -20 ℃. A solution of diarylzinc reagent (0.45 mmol in 1.5 mL of THF, 1.5 equiv.) was added dropwise. After stirring for 4 h at -20 ℃, the reaction mixture was quenched with saturated NH4Cl solution. The yield was determined by 19F NMR before working up. If necessary, the reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography to give product 3.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Hiyama, T. Organofluorine Compounds, Chemistry and Applications, Springer-Verlag, Berlin Heidelberg, 2000. (b) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (c) O' Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

    2. [2]

      (a) Blackburn, C. M.; England, D. A.; Kolkmann, F. J. Chem. Soc. Chem. Commun. 1981, 930. (b) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin Trans. 1 1984, 1119. (c) Kitazume, T.; Kamazaki, T. Experimental Methods in Organic Fluorine Chemistry, Gordon and Breach Science, Tokyo, 1998. (d) Yang, Y.; You, Z.; Qing, F.-L. Acta Chim. Sinica 2012, 70, 2323(in Chinese). (杨义, 游正伟, 卿凤翎, 化学学报, 2012, 70, 2323.)

    3. [3]

      For selected reviews, see: (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (b) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    4. [4]

      For selected examples, see: (a) Xue, F.; Li, H.; Delker, S. L.; Fang, J.; Martasek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2010, 132, 14229. (b) Anderson, M. O.; Zhang, J.; Liu, Y.; Yao, C.; Phuan, P.-W.; Verkman, A. S. J. Med. Chem. 2012, 55, 5942. (c) Matthew, A. N.; Zephyr, J.; Hill, C. J.; Jahangir, M.; Newton, A.; Petropoulos, C. J.; Huang, W.; Kurt-Yilmaz, N.; Schiffer, C. A.; Ali, A. J. Med. Chem. 2017, 60, 5699.

    5. [5]

      (a) Markovsi, L. N.; Pahinnik, V. E.; Kirsanov, A. V. Synthesis 1973, 12, 787. (b) Middleton, W. J. J. Org. Chem. 1975, 40, 574.

    6. [6]

      For selected reviews regarding fluorination and trifluoromethylation, see: (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.

    7. [7]

      For transition-metal-catalyzed difluoroalkylation, see: (a) Chen, B.; Vicic, D. A. Top. Organomet. Chem. 2014, 52, 113. (b) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.) (c) Wang, W.; Yu, Q.; Zhang, Q.; Li, J.; Hui, F.; Yang, J.; LÜ, J. Chin. J. Org. Chem. 2018, 38, 1569(in Chinese). (王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑, 有机化学, 2018, 38, 1569.)

    8. [8]

      (a) McLoughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 2921. (b) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969, 10, 4095. (c) Taguchi, T.; Kitagawa, O.; Morikawa, T.; Nishiwaki, T.; Uehara, H.; Endo, H.; Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103.

    9. [9]

      (a) Chen, Q.-Y.; Yang, Z.-Y. J. Fluorine Chem. 1985, 28, 399. (b) Chen, Q.-Y.; Yang, Z.-Y. Acta Chim. Sinica 1985, 43, 1118(in Chinese). (陈庆云, 杨振宇, 化学学报, 1985, 43, 1118.) (c) Zhou, Q.-L.; Huang, Y.-Z. J. Fluorine Chem. 1989, 43, 385. (d) Huang, W.-Y. Youji Huaxue, 1992, 12, 12(in Chinese). (黄维垣, 有机化学, 1992, 12, 12) (e) Huang, X.-T.; Long, Z.-Y.; Chen, Q.-Y. J. Fluorine Chem. 2001, 111, 107.

    10. [10]

      (a) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264. (b) Feng, Z.; Chen, F.; Zhang, X. Org. Lett. 2012, 14, 1938. (c) Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230. (d) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 1669. (e) Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 9909. (f) Feng, Z.; Min, Q.-Q.; Fu, X.-P.; An, L.; Zhang, X. Nat. Chem. 2017, 9, 918. (g) An, L.; Xu, C.; Zhang, X. Nat. Commun. 2017, 8, 1460.

    11. [11]

      For selected reviews, see: (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. (b) Sherry, B. D.; FÜrstner, A. Acc. Chem. Res. 2008, 41, 1500. (c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. (d) Nakamura, E.; Hatakeyama, T.; Ito, S.; Ishizuka, K.; Ilies, L.; Nakamura, M. Org. React. 2014, 83, 1. (e) Bauer, I.; Kn lker, H.-J. Chem. Rev. 2015, 115, 3170. (f) Kuzmina, O. M.; Steib, A. K.; Moyeux, A.; Cahiez, G.; Knochel, P. Synthesis 2015, 47, 1696. (g) Bedford, R. B. Acc. Chem. Res. 2015, 48, 1485. (h) Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766. (i) Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev. 2017, 117, 9086.

    12. [12]

      For an iron-catalyzed cross-coupling of a-halo-b, b-difluoroethylene-containing compounds, see: (a) Lin, X.; Zheng, F.; Qing, F.-L. Organometallics 2012, 31, 1578. For an iron-catalyzed difluoromethylation of arylzincs with difluoromethyl 2-pyridyl sulfone, see: (b) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880.

    13. [13]

      An, L.; Xiao, Y.-L.; Zhang, X. Angew. Chem., Int. Ed. 2018, 57, 6921.  doi: 10.1002/anie.v57.23

    14. [14]

      Xu, B.; Mashuta, M. S.; Hammond, G. B. Angew. Chem., Int. Ed. 2006, 45, 7265.  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      (a) Yu, Y.-B.; He, G.-Z.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 10457. (b) Guo, W.-H.; Luo, Z.-J.; Zeng, W.; Zhang, X. ACS Catal. 2017, 7, 896. (c) Xiao, Y.-L.; Pan, Q.; Zhang, X. Acta Chim. Sinica 2015, 73, 383(in Chinese). (肖玉兰, 潘强, 张新刚, 化学学报, 2015, 73, 383.)

    16. [16]

      (a) Furstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773. (b) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078. (c) Bedford, R. B.; Brenner, P. B.; Carter, E.; Cogswell, P. M.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Nunn, J.; Woodall, C. H. Angew. Chem., Int. Ed. 2014, 53, 1804.

    17. [17]

      (a) Hedstrçm, A.; Izakian, Z.; Vreto, I.; Wallentin, C.-J.; Norrby, P. Chem. Eur. J. 2015, 21, 5946; (b) Daifuku, S. L.; Kneebone, J. L.; Snyder, B. E. R.; Neidig, M. L. J. Am. Chem. Soc. 2015, 137, 11432; (c) Kneebone, J. L.; Brennessel, W. W.; Neidig, M. L. J. Am. Chem. Soc. 2017, 139, 6988.

    18. [18]

      (a) Sharma, A. K.; Sameera, W. M. C.; Jin, M.; Adak, L.; Okuzono, C.; Iwamoto, T.; Kato, M.; Nakamura, M.; Morokuma, K. J. Am. Chem. Soc. 2017, 139, 16126. (b) Lee, W.; Zhou, J.; Gutierrez, O. J. Am. Chem. Soc. 2017, 139, 16126.

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(15)
  • Abstract views(1301)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return