Citation: Tian Yawei, Zhou Gang, Zhao Xiaoming, Dan Wenyan. Selective Fluorination of 2-Aminopyrazine Derivatives in Aqueous Phase[J]. Acta Chimica Sinica, ;2018, 76(12): 962-966. doi: 10.6023/A18070307 shu

Selective Fluorination of 2-Aminopyrazine Derivatives in Aqueous Phase

  • Corresponding author: Zhao Xiaoming, xmzhao08@mail.tongji.edu.cn
  • Received Date: 30 July 2018
    Available Online: 8 December 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21272175) and the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities  the National Natural Science Foundation of China 21272175

Figures(4)

  • 2-Aminopyrazines are widely found in naturally occurring compounds, drugs and biologically active ingredients. Especially, the compounds containing a fluorinated aminopyrazine have been applied in the pharmaceutical industry. The introduction of a fluorine atom into organic compounds generally leads to a significant change in the chemical, physical and biological properties. Therefore, new method for introducing a fluorine atom into the aminopyrazine ring is highly desirable. Traditional Balz-Schiemann reaction is difficult to employ in the preparation of fluorinated aminopyrazines because of the decomposition of pyrazine derivatives under strong acidic conditions. In general, pyrazines can take place nucleophilic fluorination; aminopyrazines, which is activated by an amino group, can occur electronphilic halogenation; the radical fluorination of pyrazine derivatives has not reported yet. We envisage a direct fluorination of 2-aminopyrazines with Selectfluor may proceed under mild conditions. In this paper, the fluorination of 2-aminopyrazine derivatives with Selectfluor in aqueous phase was studied, and a transition-metal free fluorination of 2-aminopyrazine derivatives was developed. The method affords 5-fluoro-2-aminopyrazines in good yield with excellent chemoselectivity and high regioselectivity. The results suggested that the fluorination may undergo a radical process. Using this method, an enzyme inhibitor having a certain inhibitory effect on analog of B-Raf enzyme was synthesized. The synthesis was as follows: 6-phenyl-2-aminopyrazine (1a, 0.2 mmol), selectfluor (2a, 0.1 mmol), toluene:water [V(toluene):V(water)=1:1, 2 mL] in a reaction tube. The reaction was carried out at room temperature, monitoring by 19F NMR. After the completion of the reaction, the reaction mixture was cooled, diluted with ethyl acetate, washed with saturated brine, and dried over anhydrous sodium sulfate. The mixture was filtered, and the filtrate was concentrated and purified by silica gel column chromatography (petroleum ether/ethyl acetate) to give 5-fluoro-2-aminopyrazines 3 and 3-fluoro-2-aminopyrazines 3'.
  • 加载中
    1. [1]

      (a) Vollhardt, P.; Schore, N. Organic Chemistry, Freeman Palgrave Macmillan, New York, 2011. (b) Wang, M.; Zhang, Y.; Wang, T.; Wang, C.; Xue, D.; Xiao, J. Org. Lett. 2016, 18, 1976. (c) Jean, B.; Marc, L.; Guy, Q. J. Heterocycl. Chem. 1980, 17, 257. (d) Gainer, H.; Kokorudz, M.; Langdon, W. K. J. Org. Chem. 1961, 26, 2360. (e) Bourguignon, J.; Lemarchand, M.; Quéquiner, G. J. Heterocycl. Chem. 1980, 17, 257.

    2. [2]

      (a) Hart, B. P.; Haile, W. H.; Licato, N. J.; Bolanowska, W. E.; Mcguire, J. J.; Coward, J. K. J. Med. Chem. 1996, 27, 56. (b) Jhulki, I.; Chanani, P. K.; Abdelwahed, S. H.; Begley, T. P. J. Am. Chem. Soc. 2016, 138, 8324.

    3. [3]

      (a) Zou, Y.; Zhao, D.; Yan, C.; Ji, Y.; Liu, J.; Xu, J.; Lai, Y.; Tian, J.; Zhang, Y.; Huang, Z. J. Med. Chem. 2018, 61, 1821. (b) Cheng, X. C.; Liu, X. Y.; Xu, W. F.; Guo, X. L.; Ou, Y. Bioorg. Med. Chem. 2007, 15, 3315. (c) Zhao, Y.; Qian, G.; Ye, Y.; Wright, S.; Chen, H.; Shen, Y.; Liu, F.; Du, L. Org. Lett. 2016, 18, 2495. (d) W chter, G. A.; Davis, M. C.; Martin, A. R.; Franzblau, S. G. J. Med. Chem. 1998, 41, 2436. (e) Kalinowski, D. S.; Sharpe, P. C.; Bernhardt, P. V.; Richardson, D. R. J. Med. Chem. 2008, 51, 331.

    4. [4]

      (a) Liu, L. W.; Wang, F. Y.; Tian, F.; Peng, L.; Wang, L. X. Org. Process Res. Dev. 2016, 20, 320. (b) Ashley, J. D.; Stefanick, J. F.; Schroeder, V. A.; Suckow, M. A.; Kiziltepe, T.; Bilgicer, B. J. Med. Chem. 2014, 57, 5282. (c) Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V. K.; Smith, D. B.; Jekle, A.; Kinkade, A. J. Med. Chem. 2016, 59, 4611. (d) Asaki, T.; Kuwano, K.; Morrison, K.; Gatfield, J.; Hamamoto, T.; Clozel, M. J. Med. Chem. 2015, 58, 7128. (e) Guillotin, D.; Austin, P.; Begum, R.; Freitas, M. O.; Merve, A.; Brend, T.; Short, S. C.; Marino, S.; Martin, S. A. Clin. Cancer Res. 2016, 23, 2880. (f) Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V. K.; Smith, D. B.; Jekle, A.; Kinkade, A. J. Med. Chem. 2016, 59, 4611.

    5. [5]

      (a) Ryan, S. J.; Schimler, S. D.; Bland, D. C.; Sanford, M. S. Org. Lett. 2015, 46, 1866. (b) Schimler, S. D.; Ryan, S. J.; Bland, D. C.; Anderson, J. E.; Sanford, M. S. J. Org. Chem. 2015, 80, 12137. (c) Sun, H.; DiMagno, S. G. Angew. Chem., Int. Ed. 2006, 45, 2720. (d) Kindon, N.; Andrews, G.; Baxter, A.; Cheshire, D.; Hemsley, P.; Johnson, T.; Liu, Y.; McGinnity, D.; McHale, M.; Mete, A.; Reuberson, J.; Roberts, B.; Steele, J.; Teobald, B.; Unitt, J.; Vaughan, D.; Walters, I.; Stocks, M. J. ACS Med. Chem. Lett. 2017, 8, 981.

    6. [6]

      Fier, P. S.; Hartwig, J. F. Science 2013, 342, 956.  doi: 10.1126/science.1243759

    7. [7]

      Selectfluor made from F2 and 1, 4-diazabicyclo[2.2.2] octane in the presence of CH2Cl2 and BF3 was reported, see: (a) Banks, R. E.; Mohialdin-Khaffaf, S. N.; Lal, G. S.; Sharif, I.; Syvret, R. G. J. Chem. Soc., Chem. Commun. 1992, 23, 595. (b) Review: Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Angew. Chem., Int. Ed. 2004, 36, 192. (c) Account: Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31.

    8. [8]

      CCDC 1826147 for 3a contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center.

    9. [9]

      CCDC 1847836 for 3a' contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center.

    10. [10]

      (a) Gahman, T. C.; Lang, H.; Davis, R. L.; Scranton, S. A. WO 2006124874, 2006[Chem. Abstr. 2006, 146, 13164]. (b) Yin, J.; Zhao, M. M.; And, M. A. H.; Mcnamara, J. M. Org. Lett. 2002, 4, 3481.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(16)
  • Abstract views(849)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return