Citation: Yang Wenyuan, Liang Hong, Qiao Zhiwei. High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas[J]. Acta Chimica Sinica, ;2018, 76(10): 785-792. doi: 10.6023/A18070293 shu

High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas

  • Corresponding author: Qiao Zhiwei, zqiao@gzhu.edu.cn
  • Received Date: 22 July 2018
    Available Online: 13 October 2018

    Fund Project: the National Natural Science Foundation of China 21576058the National Natural Science Foundation of China 21676094Project was supported by the National Natural Science Foundation of China (Nos. 21676094 and 21576058)

Figures(4)

  • In this work, the adsorption performance of 6013 computation-ready, experimental metal-organic frameworks (CoRE-MOFs) for the capture of H2S and CO2 from natural gas mixture (CH4, C2H6, C3H8, H2S and CO2) is calculated by high-throughput screening of grand canonical Monte Carlo (GCMC) simulation in 298 K and 10 bar. For the comprehensive consideration of both adsorption capacities and selectivities of H2S+CO2, first, we compare three different tradeoff methods (α tradeoff method (Tradeoff between SH2S+CO2/C1-C3 and NH2S+CO2, TSN), standard normal method (SNM), β tradeoff method (Tradeoff between selectivity and capacity, TSC)). The effect of selectivity on the new tradeoff variables are appropriately reduced by these tradeoff methods, because some of selectivities are very high. Thus, the new tradeoff variables can comprehensively evaluate the adsorption performance of CoRE-MOFs. Moreover, the correlation of each MOF descriptor (including the largest cavity diameter (LCD), void fraction (φ), surface area (VSA) and isosteric heat (Qst0)) with three tradeoff variables are analyzed by Pearson correlation coefficient, respectively. The LCDs are calculated by Zeo++ software, but the φ and VSA are simulated by RASPA using probes of He and N2, respectively. The Qst0 of each adsorbate gas are calculated at infinite dilution condition using NVT-MC method. All GCMC simulations for the screening are carried out using RASPA software. The results show that TSC has the best correlation with four MOF descriptors and the linear model could sufficiently describe the relationship between TSC and four MOF descriptors. Pearson correlation coefficients of four descriptors were -0.613, -0.717, -0.673 and 0.536 on TSC, respectively. Multiple linear regression is applied to quantitatively determine the influencing degree of four descriptors on performance, respectively. Among the four descriptors, Qst0, φ, and LCD have larger standardized regression coefficients compared with VSA. This indicates that Qst0, φ, and LCD are more useful in describing the performances of the MOFs. Thus, these three descriptors are used in the decision tree modeling to define an effective path for screening high-performance MOFs. It is concluded that a maximum probability (77.6%) of finding the good MOFs can be obtained from the three descriptors. Finally, the 20 best MOFs stand out from the whole database, and find that the alkali or alkaline earth metals in MOFs could effectively enhance the separation performance of H2S and CO2. The microscopic insights and guidelines by this computational study can provide significant theoretical guidance for the development of adsorbent for the purification of natural gas.
  • 加载中
    1. [1]

      Shahbaz, M.; Lean, H. H.; Farooq, A. Renew. Sust. Energy. Rev. 2013, 18, 87.  doi: 10.1016/j.rser.2012.09.029

    2. [2]

      Schoots, K.; Rivera-Tinoco, R.; Verbong, G.; Zwaan, D. V. B. Int. J. Greenhouse Gas Control 2011, 5, 1614.  doi: 10.1016/j.ijggc.2011.09.008

    3. [3]

      Wu, J. R.; Mao, H. Y. Nat. Gas. Ind. 2011, 31, 99.

    4. [4]

      Yang, T. T.; Xiong, Y. T.; Cui, R. H.; Xiao, J.; Han, S. Y. Nat. Gas & Oil 2013, 31, 40.  doi: 10.3969/j.issn.1006-5539.2013.02.011

    5. [5]

      Fan, H.; Chen, L. J.; Zhao, H.; Zeng, J.; Sun, W. C.; Hu, K. N. Nat. Gas. Ind. 2011, 36, 34.

    6. [6]

      Wang, J.; Zhang, X. P.; Li, E. T.; Ma, L.; Wang, S. L. J. Changzhou Univ. 2013, 25, 88.

    7. [7]

      Zhang, X. D.; Li, H. X.; Hou, F. L.; Dong, H.; Zhu, Z.; Cui, L. F. J. Funct. Mater. 2016, 47, 8178.  doi: 10.3969/j.issn.1001-9731.2016.08.031

    8. [8]

      Palomino, M.; Corma, A.; Rey, F.; Valencia, S. Langmuir 2010, 26, 1910.  doi: 10.1021/la9026656

    9. [9]

      Shah, M. S.; Tsapatsis, M.; Siepman, J. I. Angew. Chem. 2016, 128, 6042.  doi: 10.1002/ange.201600612

    10. [10]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 44, 974.

    11. [11]

      Zhang, X. F.; An, X. H.; Liu, D. H.; Yang, Q. Y.; Yang, Z. H.; Zhong, C. L.; Lu, X. H. Acta Chim. Sinica 2011, 69, 84.
       

    12. [12]

      Zhou, J. H.; Zhao, H. L.; Hu, J.; Liu, H. L.; Hu, Y. CIESC J. 2014, 65, 1680.  doi: 10.3969/j.issn.0438-1157.2014.05.018

    13. [13]

      Mu, W.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Acta Phys.-Chim. Sin. 2010, 26, 1657.  doi: 10.3866/PKU.WHXB20100616

    14. [14]

      Wu, X. J.; Zhao, P.; Wang, J.; Liu, B. S.; Cai, W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043.  doi: 10.3866/PKU.WHXB201409222

    15. [15]

      Zhou, Z. E.; Xue, C. Y.; Yang, Q. Y.; Zhong, C. L. Acta Chim. Sinica 2009, 67, 477.
       

    16. [16]

      Qiao, Z. W.; Wang, N. Y.; Jiang, J. W.; Zhou, J. Chem. Commun. 2015, 52, 974.

    17. [17]

      Wu, P.; He, C.; Wang, J.; Peng, X. J. Am. Chem. Soc. 2012, 134, 14991.  doi: 10.1021/ja305367j

    18. [18]

      Kong, G. Q.; Ou, S.; Zou, C.; Wu, C. D. J. Am. Chem. Soc. 2012, 134, 19851.  doi: 10.1021/ja309158a

    19. [19]

      Zhang, Z. M.; Yang, J. F.; Chen, Y.; Wang, Y.; Li, L. B.; Li, J. P. CIESC J. 2015, 66, 3549.

    20. [20]

      Han, S. Y.; Fan, W. D.; Gao, L.; Cao, Y. X.; Sun, D. F. Chem. Eng. Oil Gas. 2017, 46, 51.

    21. [21]

      Wang, S.; Wu, D.; Huang, H.; Yang, M.; Tong, M.; Liu, D.; Zhong, C. L. Chin. J. Chem. Eng. 2015, 23, 1291.  doi: 10.1016/j.cjche.2015.04.017

    22. [22]

      Joshi, J.; Zhu, G.; Lee, J. J.; Carter, E. A.; Jones, C. W. Langmuir 2018, 34, 8443.  doi: 10.1021/acs.langmuir.8b00889

    23. [23]

      Belmabkhout, Y.; Pillai, R. S.; Alezi, D.; Shekhah, O.; Bhatt, P. M.; Chen, Z.; Adil, K.; Vaesen, S.; Weireld, G. D.; Pang, M.; Suetin, M.; Cairns, A. J.; Solovyeva, V.; Shkurenko, A.; Tall, O. E.; Maurin, G.; Eddaoudi, M. J. Mater. Chem. A 2017, 5, 3293.  doi: 10.1039/C6TA09406F

    24. [24]

      Bhatt, P. M.; Belmabkhout, Y.; Assen, A. H.; Weselinski, L. J.; Jiang, h.; Cadiau, A.; Xue, D. X.; Eddaoudi, M. Chem. Eng. J. 2017, 324, 392.  doi: 10.1016/j.cej.2017.05.008

    25. [25]

      Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.  doi: 10.1021/cr200190s

    26. [26]

      Wu, D.; Wang, C. C.; Liu, B.; Liu, D.; Yang, Q. Y.; Zhong, C. L. AIChE J. 2012, 58, 2078.  doi: 10.1002/aic.v58.7

    27. [27]

      Liu, B.; Smit, B. J. Phys. Chem. C 2016, 114, 8515.

    28. [28]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.  doi: 10.3866/PKU.WHXB201708302
       

    29. [29]

      Actintas, C.; Avci, G.; Daglar, H.; Gulcay, E.; Erucar, L.; Keskin, S. J. Mater. Chem. A 2018, 6, 5836.  doi: 10.1039/C8TA01547C

    30. [30]

      Xu, H.; Tong, M. M.; Wu, D.; Xiao, G.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. Acta Phys.-Chim. Sin. 2015, 31, 41.  doi: 10.3866/PKU.WHXB201411132

    31. [31]

      Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2012, 5, 9849.  doi: 10.1039/c2ee23201d

    32. [32]

      James, L. Technometrics 1983, 26, 415.

    33. [33]

      Qiao, Z. W.; Peng, C. W.; Zhou, J.; Jiang, J. W. J. Mater. Chem. A 2016, 4, 15904.  doi: 10.1039/C6TA06262H

    34. [34]

      Qiao, Z. W.; Xu, Q.; Jiang, J. W. J. Membr. Sci. 2018, 551, 47.  doi: 10.1016/j.memsci.2018.01.020

    35. [35]

      Glover, T. G.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghil, O. Chem. Eng. Sci. 2011, 66, 163.  doi: 10.1016/j.ces.2010.10.002

    36. [36]

      Herm, Z. R.; Snisher, J. A.; Smit, B.; Krishna, R.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 5664.  doi: 10.1021/ja111411q

    37. [37]

      Chung, Y. G.; Camp, J.; Haranczy, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yidirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.  doi: 10.1021/cm502594j

    38. [38]

      http://gregchung.github.io/CoRE-MOFs/.

    39. [39]

      Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.  doi: 10.1016/j.micromeso.2011.08.020

    40. [40]

      Dubbeldam, D.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2016, 42, 81.  doi: 10.1080/08927022.2015.1010082

    41. [41]

      Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83.

    42. [42]

      Wu, X. J.; Zheng, J.; Li, J.; Cai, W. Q. Acta Phys.-Chim. Sin. 2013, 29, 2207.  doi: 10.3866/PKU.WHXB201307191

    43. [43]

      Rappe, A. K.; Casewit, C. J.; Colwell, K. S. Ⅲ, W. A. G.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.  doi: 10.1021/ja00051a040

    44. [44]

      Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.  doi: 10.1021/jz401479k

    45. [45]

      And, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.  doi: 10.1021/jp972543+

    46. [46]

      Qiao, Z. W.; Xu, Q.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.  doi: 10.1021/acs.jpcc.7b07758

    47. [47]

      Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. J. Phys. Chem. B 2015, 119, 7041.  doi: 10.1021/acs.jpcb.5b02536

    48. [48]

      Ewald, P. P. Ann. Phys. 1921, 369, 253.  doi: 10.1002/(ISSN)1521-3889

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    12. [12]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    16. [16]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    17. [17]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(39)
  • Abstract views(1627)
  • HTML views(368)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return