Citation: He Yunqing, Teng Jinwei, Tian Chong, Borzov Maxim, Hu Qishan, Nie Wanli. Reductive Amination by One Pot Reaction of Aldehydes and Alkoxyamines Catalyzed by B(C6F5)3[J]. Acta Chimica Sinica, ;2018, 76(10): 774-778. doi: 10.6023/A18070281 shu

Reductive Amination by One Pot Reaction of Aldehydes and Alkoxyamines Catalyzed by B(C6F5)3

  • Corresponding author: Nie Wanli, niewl126@126.com
  • Received Date: 18 July 2018
    Available Online: 6 October 2018

    Fund Project: Scientific Research Fund of Leshan Normal University Z1308the National Natural Science Foundation of China 21542011Project supported by the National Natural Science Foundation of China (21542011), and Scientific Research Fund of Leshan Normal University (Z1414, Z1308)Scientific Research Fund of Leshan Normal University Z1414

Figures(7)

  • Recently the research work concerning B(C6F5)3 catalyzed reductive and amination of aldehydes and ketones revealed that this extremely electron-deficient borane is, actually, a rather water-tolerant catalyst. This fact considerably broadens the scope of the water/base tolerant FLP chemistry. In this project, an efficient one pot reductive amination method has been developed by reaction of aldehydes and alkoxyamines with hydrosilanes as the hydride sources and B(C6F5)3 as catalyst without cleavage of the N-O bond. This protocol can be used to prepare the secondary and tertiary alkoxyamines by starting from the primary and secondary ones, respectively. A special attention has been paid to elucidate the role of water in the reductive amination. When benzaldehyde reacts with benzoxylamine, only the condensation product oxime ether could be observed. Whereas surprisingly when excess amount of water is added, the reductive amination goes successfully like the alkoxyamine hydrochloride works. The detailed NMR data has shown that a transformation of the intermediate oximes ArCH=NOR to the "ammonium borates"[ArCH=NHOR]+[X-B(C6F5)3]-(X=Cl, OH) can take place in the reaction system, while the latter can be converted into the well-known active intermediate "ammonium hydroborates"[ArCH=NHOR]+[H-B(C6F5)3]- to reduce the C=N bond under mild condition in the presence of hydrosilanes. That means the deprotonation reaction of the Lewis acid water adduct H2O-B(C6F5)3 could be a key step for the B(C6F5)3 catalyzed reaction under moist condition. In this case the adduct H2O-B(C6F5)3 acts as a Brønsted acid as HCl does. Meanwhile a simulative experiment under different ratio of water has been fulfilled to prove this speculation. The C=N bond of Benzalaniline (PhCH=NPh) and Benzyloxy oxime ether (PhCH=NOCH2Ph) could be reduced only in presence of 2 equiv. H2O rather than equivalent. Based on this study it has shown that in the frustrated Lewis pair (FLP) chemistry, the Lewis acid B(C6F5)3 is not only a highly effective and water tolerant catalyst, the "disfavored" deprotonation of H2O-B(C6F5)3 adductis possibly playing an important role in reductive amination reaction. To clarify in detail the actual role of water in the reductive amination reaction under the "moist" conditions would enable the further development of FLP and related catalyzed reactions.
  • 加载中
    1. [1]

      Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440.  doi: 10.1021/ja961536g

    2. [2]

      Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.  doi: 10.1002/anie.200903708

    3. [3]

      Liu, Y.-B.; Du, H.-F. Acta Chim. Sinica 2014, 72, 771.
       

    4. [4]

      Oestreich, M.; Hermeke, J.; Mohr, J. Chem. Soc. Rev. 2015, 44, 2202.  doi: 10.1039/C4CS00451E

    5. [5]

      Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2015, 54, 6400.  doi: 10.1002/anie.201409800

    6. [6]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.  doi: 10.1021/ja5088979

    7. [7]

      Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.  doi: 10.1021/ja508829x

    8. [8]

      Gyömöre, A.; Bakos, M.; Földes, T.; Papai, I.; Domja, N. A.; Soós, T. ACS Catal. 2015, 5, 5366.  doi: 10.1021/acscatal.5b01299

    9. [9]

      Fasano, V.; Radcliffe J. E.; Ingleson, M. J. ACS Catal. 2016, 6(3), 1793.  doi: 10.1021/acscatal.5b02896

    10. [10]

      Fasano, V.; Ingleson, M. J. Chem. Eur. J. 2017, 23(9), 2217.  doi: 10.1002/chem.201605466

    11. [11]

      Melman, A. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Part 1, Eds. : Raqppoport, Z. ; Liebman, J. F., Wiley, Chichester, 2009, pp. 117~161.

    12. [12]

      Mohr, J.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 1.  doi: 10.1002/anie.v53.1

    13. [13]

      Mohr, J.; Porwal, D.; Chatterjee, I.; Oestreich, M. Chem. Eur. J. 2015, 21, 17583.  doi: 10.1002/chem.201503509

    14. [14]

      Hu, X. ; Tian, C. ; Jiang, Y. ; Borzov, M. ; Nie, W. -L. Acta Chim. Sinica 2015, 73, 1025. 

    15. [15]

      Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1203.
       

    16. [16]

      Wen, Z. -G. ; Tian, C. ; Jiang, Y. ; Borzov, M. ; Nie, W. -L. Acta Chim. Sinica 2016, 74, 498.

    17. [17]

      Nie, W.-L.; Sun, G.-F.; Tian, C.; Borzov, M. V. Z. Naturforsch. 2016, 71, 1029.  doi: 10.1515/znb-2016-0110

    18. [18]

      Zhang, L.-W.; Wen, Z.-G.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2017, 75, 819.
       

    19. [19]

      Sun, G.-F.; Su, M.; Fang, J.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2017, 75, 824.
       

    20. [20]

      He, Y. -Q. ; Zou, M. -Y. ; Xue, Y. ; Hu, Q. -S. ; Borzov, M. V. ; Nie, W. -L. Mechanism Aspects of the B(C6F5)3 Catalyzed Reductive Amination, 2018, Submitted.

    21. [21]

      Beck, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    22. [22]

      Parr, R. G. ; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.

    23. [23]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    24. [24]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.  doi: 10.1021/cr00088a005

    25. [25]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. ; Li, X. ; Caricato, M. ; Marenich, A. V. ; Bloino, J. ; Janesko, B. G. ; Gomperts, R. ; Mennucci, B. ; Hratchian, H. P. ; Ortiz, J. V. ; Izmaylov, A. F. ; Sonnenberg, J. L. ; Williams-Young, D. ; Ding, F. ; Lipparini, F. ; Egidi, F. ; Goings, J. ; Peng, B. ; Petrone, A. ; Henderson, T. ; Ranasinghe, D. ; Zakrzewski, V. G. ; Gao, J. ; Rega, N. ; Zheng, G. ; Liang, W. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Throssell, K. ; Montgomery, J. A. ; Jr., Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. J. ; Heyd, J. J. ; Brothers, E. N. ; Kudin, K. N. ; Staroverov, V. N. ; Keith, T. A. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. P. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Millam, J. M. ; Klene, M. ; Adamo, C. ; Cammi, R. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Farkas, O. ; Foresman, J. B. ; Fox, D. J. Gaussian 16, Revision A. 03, Gaussian, Inc., Wallingford CT, 2016.

    26. [26]

      Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239.  doi: 10.1016/0301-0104(82)85072-6

    27. [27]

      Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.  doi: 10.1016/0009-2614(96)00349-1

    28. [28]

      Nie, H.-F.; Zhong, H.-Y.; Li, X.-N.; Li, Y.-Q.; Wang, J.-X. Chin. J. Org. Chem. 2013, 33, 2412.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    11. [11]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    20. [20]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

Metrics
  • PDF Downloads(9)
  • Abstract views(1393)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return