Citation: Ren Zhiwen, Ren Nan, Zhang Faguang, Ma Junan. Facile Synthesis of Fluorinated Isoxazoles via Consecutive Double C—F Bond Cleavage[J]. Acta Chimica Sinica, ;2018, 76(12): 940-944. doi: 10.6023/A18070279 shu

Facile Synthesis of Fluorinated Isoxazoles via Consecutive Double C—F Bond Cleavage

  • Corresponding author: Zhang Faguang, zhangfg1987@tju.edu.cn Ma Junan, majun_an68@tju.edu.cn
  • Received Date: 17 July 2018
    Available Online: 14 December 2018

    Fund Project: the National Natural Science Foundation of China 21532008the National Natural Science Foundation of China 21472137Project supported by the National Natural Science Foundation of China (Nos. 21472137, 21532008, 21772142) and the National Basic Research Program of China (973 Program, No. 2014CB745100)the National Basic Research Program of China 973 Programthe National Basic Research Program of China 2014CB745100the National Natural Science Foundation of China 21772142

Figures(4)

  • Fluorinated heterocycles represent a ubiquitous structural motif found in numerous pharmaceuticals, agrochemicals, and functional materials. This is especially true for fluorine-containing five-membered heteroaromatic compounds that have been widely investigated in various fields for a long time. In this context, fluorinated isoxazoles have emerged as valuable scaffolds owing to their diverse biological properties. Among various approaches that have been developed for the synthesis and functionalization of isoxazoles, efficient and modular route to fluorine-substituted isoxazoles are still limited. Traditional methods include the condensation of 2-fluoro-1, 3-dicarbonyl derivatives with hydroxylamine, Au-catalyzed fluorocyclization of 2-alkyne O-methyloximes, and direct fluorination of isoxazoles. However, the wide applicability of these approaches often suffers from low chemical yields, harsh reaction conditions, and limited substrate scope. Herein, we describe a one-pot protocol for the construction of fluorinated isoxazoles from CF3-containing precursors with hydroxylammonium chloride. Typical features of this reaction include mild conditions, simple operations, and good functional group compatibility. This method provides facile access to a series of 3-F-5-aryl-isoxazoles in moderate to good yields from easily available α-CF3-β-keto esters. Moreover, further synthetic transformations of obtained isoxazoles to important bio-active molecular derivatives have also been demonstrated. A representative procedure for this reaction is as following: α-CF3-β-keto ester 1 (0.2 mmol, 1.0 equiv.), HONH2·HCl (46 mg, 0.66 mmol), pyridine (71 μL, 0.88 mmol), and CH3CN (3.0 mL) were added into an oven-dried vial equipped with a magnetic stir bar. The mixture was stirred at 75 ℃ for 12 h and monitored by thin-layer chromatography (TLC). After completion, 10 mL of water was added and the mixture was extracted with EtOAc for three times. The combined organic layers were washed with saturated NaCl and dried over Na2SO4. The mixture was evaporated under reduced pressure and residue was purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate (V:V=30:1) to afford the 3-F-5-aryl-isoxazole 2.
  • 加载中
    1. [1]

      (a) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432. (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (e) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. (f) Fluorinated Hetreocycles, ACS Symp. Ser. No. 1003, Eds.: Gakh, A. A.; Kirk, K. L. ACS, Washington, DC, 2009, pp. 3~20. (g) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (h) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Chem. Soc. Rev. 2011, 40, 3496. (i) Li, S.; Ma, J.-A. Chem. Soc. Rev. 2015, 44, 7439. (j) Jeschke, P. Pest Manage. Sci. 2017, 73, 10536. (k) Chen, C.; Fu, L.; Chen, P.; Liu, G. Chin. J. Chem. 2017, 35, 1781. (l) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338.

    2. [2]

      (a) Fluorine in Heterocyclic Chemistry, Vol. 1, Eds.: Nenajdenko, V., Springer International Publishing, 2014. (b) Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2013, 152, 2.

    3. [3]

      (a) Cordero, F. M.; Giomi, D.; Lascialfari, L. In Progress in Heterocyclic Chemistry, Vol. 27, Eds.: Gribble, G. W.; Joule, J. A. Elsevier Ltd., 2015, p. 321. (b) Agrawal, N.; Mishra, P. Med. Chem. Res. 2018, 27, 1309.

    4. [4]

      (a) Pinho, M.; Teresa, M. V. D. Curr. Org. Chem. 2005, 9, 925. (b) Kaur, K.; Kumar, V.; Sharma, A. K.; Gupta, G. K. Eur. J. Med. Chem. 2014, 77, 121. (c) Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583. (d) Morita, T.; Yugandar, S.; Fuse, S.; Nakamura, H. Tetrahedron Lett. 2018, 59, 1159.

    5. [5]

      (a) Fluorine in Medicinal Chemistry and Chemical Biology, Eds.: Ojima, I., Wiley-Blackwell, Chichester, UK, 2009. (b) Isanbora, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303.

    6. [6]

      (a) Peng, W.-M.; Zhu, S.-Z. Acta Chim. Sinica 2003, 61, 455. (彭卫民, 朱仕正, 化学学报, 2003, 61, 455.) (b) Kumar, V.; Kaur, K. J. Fluorine Chem. 2015, 180, 55.

    7. [7]

      (a) Bumgardner, C. L.; Sloop, J. C. J. Fluorine Chem. 1992, 56, 141. (b) Sloop, J. C.; Bumgardner, C. L.; Loehle, W. D. J. Fluorine Chem. 2002, 118, 135.

    8. [8]

      (a) Stephens, C. E.; Blake, J. A. J. Fluorine Chem. 2004, 125, 1939. (b) Sato, K.; Sandford, G.; Shimizu, K.; Akiyama, S.; Lancashire, M. J.; Yufit, D. S.; Tarui, A.; Omote, M.; Kumadaki, I.; Harusawa, S.; Ando, A. Tetrahedron 2016, 72, 1690.

    9. [9]

      Jeong, Y.; Kim, B.-I.; Lee, J. K.; Ryu, J.-S. J. Org. Chem. 2014, 79, 6444.  doi: 10.1021/jo5008702

    10. [10]

      (a) Dighe, S. U.; Mukhopadhyay, S.; Kolle, S.; Kanojiya, S.; Batra, S. Angew. Chem., Int. Ed. 2015, 54, 10926. (b) Yuan, X.; Yao, J.-F.; Tang, Z.-Y. Org. Lett. 2017, 19, 1410.

    11. [11]

      (a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119. (b) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931. (c) Shen, Q.; Huang, Y.-G.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y. J. Fluorine Chem. 2015, 179, 14.

    12. [12]

      Ohtsuka, Y.; Uraguchi, D.; Yamamoto, K.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2016, 181, 1.  doi: 10.1016/j.jfluchem.2015.10.013

    13. [13]

      Okamoto, K.; Nanya, A.; Eguchi, A.; Ohe, K. Angew. Chem., Int. Ed. 2018, 57, 1039.  doi: 10.1002/anie.201710920

    14. [14]

      CCDC 1843944 contains the supplementary crystallographic data for this compound 2f, these data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

    15. [15]

      (a) Watterson, S. H.; Guo, J.; Spergel, S. H.; Langevine, C. M.; Moquin, R. V.; Shen, D. R.; Yarde, M.; Cvijic, M. E.; Banas, D.; Liu, R.; Suchard, S. J.; Gillooly, K.; Taylor, T.; Rex-Rabe, S.; Shuster, D. J.; McIntyre, K. W.; Cornelius, G.; D'Arienzo, C.; Marino, A.; Balimane, P.; Warrack, B.; Salter-Cid, L.; McKinnon, M.; Barrish, J. C.; Carter, P. H.; Pitts, W. J.; Xie, J.; Dyckman, A. J. J. Med. Chem. 2016, 59, 2820. (b) Hou, X.; Zhang, H.; Chen, B.-C.; Guo, Z.; Singh, A.; Goswami, A.; Gilmore, J. L.; Sheppeck, J. E.; Dyckman, A. J.; Carter, P. H.; Mathur, A. Org. Process Res. Dev. 2017, 21, 200.

    16. [16]

      (a) Menozzi, G.; Schenone, P.; Mosti, L. J. Heterocycl. Chem. 1983, 20, 645. (b) Strah, S.; Golobič, A.; Golobič, L.; Stanovnik, B. J. Heterocycl. Chem. 1997, 34, 1511. (c) Tang, X.-H.; Hu, C.-M. J. Fluorine Chem. 1995, 74, 9. (d) Ohtsuka, Y.; Uraguchi, D.; Yamamoto, K.; Tokuhisa, K.; Yamakawa, T. Tetrahedron 2012, 68, 2636. (e) Xu, L.; Zhang, Q.; Xie, Q.; Huang, B.; Dai, J.-J.; Xu, J.; Xu, H.-J. Chem. Commun. 2018, 54, 4406.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    12. [12]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    13. [13]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(8)
  • Abstract views(1363)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return