Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries
- Corresponding author: Wei Liangming, lmwei@sjtu.edu.cn
Citation: Wang Xiaoyu, Zhang Yu, Ma Lei, Wei Liangming. Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries[J]. Acta Chimica Sinica, ;2019, 77(1): 24-40. doi: 10.6023/A18070272
Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
doi: 10.1038/451652a
Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
doi: 10.1038/35104644
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energ. Environ. Sci. 2011, 4, 3243.
doi: 10.1039/c1ee01598b
Huggins, R. A.; Boukamp, B. A. J. Electrochem. Soc. 1984, 128, 725.
Li, J.; Yang, C.; Zhang, J.; Zhang, X.; Xia, B. Acta Chim. Sinica 2010, 68, 646(in Chinese).
Zhao, L. J.; Zhao, Q.; Niu, Z. Q.; Liang, J.; Tao, Z. L.; Chen, J. Chinese J. Inorg. Chem. 2016, 32, 929.
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.
doi: 10.1038/nmat1368
Sharma, R. A. J. Electrochem. Soc. 1976, 123, 1763.
doi: 10.1149/1.2132692
Seefurth, R. N.; Sharma, R. A. J. Electrochem. Soc. 1977, 124, 1207.
doi: 10.1149/1.2133529
Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838.
doi: 10.1149/1.1739217
Deshpande, R.; Cheng, Y. -T.; Verbrugge, M. W. J. Power Sources 2010, 195, 5081.
doi: 10.1016/j.jpowsour.2010.02.021
Kamali, A. R.; Fray, D. J. J. New Mater. Electrochem. Syst. 2010, 13, 147.
Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Chem. Soc. Rev. 2010, 39, 3115.
doi: 10.1039/b919877f
Zhang, W. -J. J. Power Sources 2011, 196, 13.
doi: 10.1016/j.jpowsour.2010.07.020
Wu, H.; Cui, Y. Nano Today 2012, 7, 414.
doi: 10.1016/j.nantod.2012.08.004
Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844.
doi: 10.1021/nl902058c
Song, T.; Xia, J.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. C.; Rogers, J. A.; Paik, U. Nano Lett. 2010, 10, 1710.
doi: 10.1021/nl100086e
Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Nat. Nanotechnol. 2012, 7, 310.
doi: 10.1038/nnano.2012.35
Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; Xiong, J. Adv. Energy Mater. 2018, 8, 1702889.
doi: 10.1002/aenm.v8.12
Shi, F.; Song, Z.; Ross, P. N.; Somorjai, G. A.; Ritchie, R. O.; Komvopoulos, K. Nat. Commun. 2016, 7, 11886.
doi: 10.1038/ncomms11886
Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Science 2017, 357, 279.
doi: 10.1126/science.aal4373
Ryu, J. H.; Kim, J. W.; Sung, Y. -E.; Oh, S. M. Electrochem. Solid-State Lett. 2004, 7, A306.
doi: 10.1149/1.1792242
Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Electrochem. Solid-State Lett. 2001, 4, A137.
doi: 10.1149/1.1388178
Timmons, A.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1206.
doi: 10.1149/1.2194611
Verbrugge, M. W.; Cheng, Y. -T. J. Electrochem. Soc. 2009, 156, A927.
doi: 10.1149/1.3205485
Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Nano Lett. 2012, 12, 904.
doi: 10.1021/nl203967r
Yen, Y. -C.; Chao, S. -C.; Wu, H. -C.; Wu, N. -L. J. Electrochem. Soc. 2009, 156, A95.
doi: 10.1149/1.3032230
Feng, K.; Li, M.; Liu, W.; Kashkooli, A. G.; Xiao, X.; Cai, M.; Chen, Z. Small 2018, 14, 1702737.
doi: 10.1002/smll.201702737
Peng, B.; Cheng, F.; Tao, Z.; Chen, J. J. Chem. Phys. 2010, 133, 034701.
Wilson, A. M.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 326.
doi: 10.1149/1.2043994
Yang, J.; Winter, M.; Besenhard, J. O. Solid State Ionics 1996, 90, 281.
doi: 10.1016/S0167-2738(96)00389-X
Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Adv. Mater. 2007, 19, 4067.
doi: 10.1002/(ISSN)1521-4095
Kang, K.; Song, K.; Heo, H.; Yoo, S.; Kim, G. -S.; Lee, G.; Kang, Y. -M.; Jo, M. -H. Chem. Sci. 2011, 2, 1090.
doi: 10.1039/c0sc00628a
Hu, L.; Wu, H.; Hong, S. S.; Cui, L.; McDonough, J. R.; Bohy, S.; Cui, Y. Chem. Commun. (Camb)2011, 47, 367.
doi: 10.1039/C0CC02078H
Ren, W.; Wang, C.; Lu, L.; Li, D.; Cheng, C.; Liu, J. J. Mater. Chem. A 2013, 1, 13433.
doi: 10.1039/c3ta11943b
Hong, L.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Yu, J. M.; Ning, P. Solid State Ionics 2000, 135, 181.
doi: 10.1016/S0167-2738(00)00362-3
Bridel, J. S.; Azaï s, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D. Chem. Mater. 2010, 22, 1229.
doi: 10.1021/cm902688w
Du, J.; Lin, N.; Qian, Y. Acta Chim. Sinica 2017, 75, 147(in Chinese).
doi: 10.3969/j.issn.0253-2409.2017.02.003
Anani, A.; Huggins, R. A. J. Power Sources 1992, 38, 351.
doi: 10.1016/0378-7753(92)80125-U
Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045.
doi: 10.1149/1.1837740
Wilson, A. M.; Way, B. M.; Dahn, J. R.; van Buuren, T. J. Appl. Phys. 1995, 77, 2363.
doi: 10.1063/1.358759
Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Pérès, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M. Adv. Funct. Mater. 2007, 17, 1765.
doi: 10.1002/(ISSN)1616-3028
Zhang, Y.; Zhu, Y.; Fu, L.; Meng, J.; Yu, N.; Wang, J.; Wu, Y. Chin. J. Chem. 2017, 35, 21.
doi: 10.1002/cjoc.v35.1
Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620(in Chinese).
Chen, Z.; Christensen, L.; Dahn, J. R. Electrochem. Commun. 2003, 5, 919.
doi: 10.1016/j.elecom.2003.08.017
Li, J. -T.; Wu, Z. -Y.; Lu, Y. -Q.; Zhou, Y.; Huang, Q. -S.; Huang, L.; Sun, S. -G. Adv. Energy Mater. 2017, 7, 1701185.
doi: 10.1002/aenm.v7.24
Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. ACS Appl. Mater. Interfaces 2010, 2, 3004.
doi: 10.1021/am100871y
Du, L.; Zhuang, Q.; Wei, T.; Shi, Y.; Qiang, Y.; Sun, S. Acta Chim. Sinica 2011, 69, 2641(in Chinese).
Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Electrochem. Solid-State Lett. 2008, 11, A76.
doi: 10.1149/1.2888173
Kang, Y. -M.; Go, J. -Y.; Lee, S. -M.; Choi, W. -U. Electrochem. Commun. 2007, 9, 1276.
doi: 10.1016/j.elecom.2007.01.019
Kim, I. -s.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 2004, 7, A44.
doi: 10.1149/1.1643792
Kim, I. -S.; Kumta, P. N. J. Power Sources 2004, 136, 145.
doi: 10.1016/j.jpowsour.2004.05.016
Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A234.
doi: 10.1149/1.2830545
Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. J. Power Sources 2010, 195, 2069.
doi: 10.1016/j.jpowsour.2009.10.041
Santimetaneedol, A.; Tripuraneni, R.; Chester, S. A.; Nadimpalli, S. P. V. J. Power Sources 2016, 332, 118.
doi: 10.1016/j.jpowsour.2016.09.102
Grillet, A. M.; Humplik, T.; Stirrup, E. K.; Roberts, S. A.; Barringer, D. A.; Snyder, C. M.; Janvrin, M. R.; Apblett, C. A. J. Electrochem. Soc. 2016, 163, A1859.
doi: 10.1149/2.0341609jes
Drofenik, J.; Gaberscek, M.; Dominko, R.; Poulsen, F. W.; Mogensen, M.; Pejovnik, S.; Jamnik, J. Electrochim. Acta 2003, 48, 883.
doi: 10.1016/S0013-4686(02)00784-3
Lestriez, B.; Bahri, S.; Sandu, I.; Roue, L.; Guyomard, D. Electrochem. Commun. 2007, 9, 2801.
doi: 10.1016/j.elecom.2007.10.001
Li, J.; Lewis, R. B.; Dahn, J. R. Electrochem. Solid-State Lett. 2007, 10, A17.
doi: 10.1149/1.2398725
Mazouzi, D.; Lestriez, B.; Roué, L.; Guyomard, D. Electrochem. Solid-State Lett. 2009, 12, A215.
doi: 10.1149/1.3212894
Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J. J. Appl. Electrochem. 2006, 36, 1099.
doi: 10.1007/s10800-006-9191-2
Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. J. Electrochem. Soc. 2008, 155, A158.
doi: 10.1149/1.2817828
Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. ACS Appl. Mater. Interfaces 2016, 8, 12211.
doi: 10.1021/acsami.6b03357
Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Nová k, P. J. Power Sources 2006, 161, 617.
doi: 10.1016/j.jpowsour.2006.03.073
Lee, K.; Lim, S.; Go, N.; Kim, J.; Mun, J.; Kim, T. H. Sci. Rep. 2018, 8, 11322.
doi: 10.1038/s41598-018-29705-y
Liu, Y.; Tai, Z.; Zhou, T.; Sencadas, V.; Zhang, J.; Zhang, L.; Konstantinov, K.; Guo, Z.; Liu, H. K. Adv. Mater. 2017, 29, 1703028.
doi: 10.1002/adma.201703028
Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B. Electrochim. Acta 2017, 258, 453.
doi: 10.1016/j.electacta.2017.11.082
Hays, K. A.; Ruther, R. E.; Kukay, A. J.; Cao, P.; Saito, T.; Wood, D. L.; Li, J. J. Power Sources 2018, 384, 136.
doi: 10.1016/j.jpowsour.2018.02.085
Yabuuchi, N.; Shimomura, K.; Shimbe, Y.; Ozeki, T.; Son, J. -Y.; Oji, H.; Katayama, Y.; Miura, T.; Komaba, S. Adv. Energy Mater. 2011, 1, 759.
doi: 10.1002/aenm.v1.5
Han, Z. -J.; Yabuuchi, N.; Shimomura, K.; Murase, M.; Yui, H.; Komaba, S. Energ. Environ. Sci. 2012, 5, 9014.
doi: 10.1039/c2ee22292b
Han, Z. J.; Yamagiwa, K.; Yabuuchi, N.; Son, J. Y.; Cui, Y. T.; Oji, H.; Kogure, A.; Harada, T.; Ishikawa, S.; Aoki, Y.; Komaba, S. Phys. Chem. Chem. Phys. 2015, 17, 3783.
doi: 10.1039/C4CP04939J
Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z. -J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T. J. Phys. Chem. C 2011, 116, 1380.
Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. J. Phys. Chem. C 2011, 115, 13487.
doi: 10.1021/jp201691g
Kang, S.; Yang, K.; White, S. R.; Sottos, N. R. Adv. Energy Mater. 2017, 7, 1700045.
doi: 10.1002/aenm.201700045
Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. Angew. Chem. Int. Ed. Engl. 2012, 51, 8762.
doi: 10.1002/anie.v51.35
Wei, L.; Chen, C.; Hou, Z.; Wei, H. Sci. Rep. 2016, 6, 19583.
doi: 10.1038/srep19583
Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D. Adv. Funct. Mater. 2014, 24, 5904.
doi: 10.1002/adfm.201401269
Lee, K.; Lim, S.; Tron, A.; Mun, J.; Kim, Y. -J.; Yim, T.; Kim, T. -H. RSC Adv. 2016, 6, 101622.
doi: 10.1039/C6RA23805J
Lee, S. -Y.; Choi, Y.; Hong, K. -S.; Lee, J. K.; Kim, J. -Y.; Bae, J. -S.; Jeong, E. D. Appl. Surf. Sci. 2018, 447, 442.
doi: 10.1016/j.apsusc.2018.04.004
Zhang, G.; Yang, Y.; Chen, Y.; Huang, J.; Zhang, T.; Zeng, H.; Wang, C.; Liu, G.; Deng, Y. Small 2018, e1801189.
Lü, L.; Lou, H.; Xiao, Y.; Zhang, G.; Wang, C.; Deng, Y. RSC Adv. 2018, 8, 4604.
doi: 10.1039/C7RA13524F
Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T. -H. J. Power Sources 2017, 360, 585.
doi: 10.1016/j.jpowsour.2017.06.049
Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75.
doi: 10.1126/science.1209150
Liu, J.; Zhang, Q.; Wu, Z. Y.; Wu, J. H.; Li, J. T.; Huang, L.; Sun, S. G. Chem. Commun. (Camb)2014, 50, 6386.
doi: 10.1039/c4cc00081a
Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S. Phys. Chem. Chem. Phys. 2014, 16, 25628.
doi: 10.1039/C4CP03499F
Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036.
doi: 10.1039/C4TA04320K
Gu, Y.; Yang, S.; Zhu, G.; Yuan, Y.; Qu, Q.; Wang, Y.; Zheng, H. Electrochim. Acta 2018, 269, 405.
doi: 10.1016/j.electacta.2018.02.168
Wu, Z. -Y.; Deng, L.; Li, J. -T.; Huang, Q. -S.; Lu, Y. -Q.; Liu, J.; Zhang, T.; Huang, L.; Sun, S. -G. Electrochim. Acta 2017, 245, 371.
doi: 10.1016/j.electacta.2017.05.094
Kim, S.; Jeong, Y. K.; Wang, Y.; Lee, H.; Choi, J. W. Adv. Mater. 2018, 30, e1707594.
doi: 10.1002/adma.v30.26
Kong, L. J.; Li, R. Y.; Yang, Y. Q.; Li, Z. J. RSC Adv. 2016, 6, 76344.
doi: 10.1039/C6RA15257K
Gendensuren, B.; Oh, E. -S. J. Power Sources 2018, 384, 379.
doi: 10.1016/j.jpowsour.2018.03.009
Ibezim, E. C.; Andrade, C. T.; Marcia, C.; Barretto, B.; Odimegwu, D. C.; Lima, F. F. D. Ibnosina J Med BS. 2011, 3, 77.
doi: 10.4103/1947-489X.210876
Yue, L.; Zhang, L.; Zhong, H. J. Power Sources 2014, 247, 327.
doi: 10.1016/j.jpowsour.2013.08.073
Wu, Z. -H.; Yang, J. -Y.; Yu, B.; Shi, B. -M.; Zhao, C. -R.; Yu, Z. -L. Rare Metals 2016.
Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y. ACS Appl. Mater. Interfaces 2018, 10, 16449.
doi: 10.1021/acsami.8b01614
Biwer, A.; Antranikian, G.; Heinzle, E. Appl. Microbiol. Biotechnol. 2002, 59, 609.
doi: 10.1007/s00253-002-1057-x
Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Nano Lett. 2014, 14, 864.
doi: 10.1021/nl404237j
Kwon, T. W.; Jeong, Y. K.; Deniz, E.; Alqaradawi, S. Y.; Choi, J. W.; Coskun, A. ACS Nano 2015, 9, 11317.
doi: 10.1021/acsnano.5b05030
Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; Zhang, S. Nano Energy 2015, 12, 178.
doi: 10.1016/j.nanoen.2014.12.011
Ling, M.; Zhao, H.; Xiao, X.; Shi, F.; Wu, M.; Qiu, J.; Li, S.; Song, X.; Liu, G.; Zhang, S. J. Mater. Chem. A 2015, 3, 2036.
doi: 10.1039/C4TA05817H
Liu, J.; Zhang, Q.; Zhang, T.; Li, J. -T.; Huang, L.; Sun, S. -G. Adv. Funct. Mater. 2015, 25, 3599.
doi: 10.1002/adfm.v25.23
Dufficy, M. K.; Khan, S. A.; Fedkiw, P. S. J. Mater. Chem. A 2015, 3, 12023.
doi: 10.1039/C5TA03126E
Kuruba, R.; Datta, M. K.; Damodaran, K.; Jampani, P. H.; Gattu, B.; Patel, P. P.; Shanthi, P. M.; Damle, S.; Kumta, P. N. J. Power Sources 2015, 298, 331.
doi: 10.1016/j.jpowsour.2015.07.102
Chen, D.; Yi, R.; Chen, S.; Xu, T.; Gordin, M. L.; Wang, D. Solid State Ionics 2014, 254, 65.
doi: 10.1016/j.ssi.2013.11.020
Jeong, Y. K.; Kwon, T. -w.; Lee, I.; Kim, T. -S.; Coskun, A.; Choi, J. W. Energ. Environ. Sci. 2015, 8, 1224.
doi: 10.1039/C5EE00239G
Klamor, S.; Schroder, M.; Brunklaus, G.; Niehoff, P.; Berkemeier, F.; Schappacher, F. M.; Winter, M. Phys. Chem. Chem. Phys. 2015, 17, 5632.
doi: 10.1039/C4CP04090B
Bie, Y.; Yang, J.; Nuli, Y.; Wang, J. J. Mater. Chem. A 2017, 5, 1919.
doi: 10.1039/C6TA09522D
Yoon, D. E.; Hwang, C.; Kang, N. R.; Lee, U.; Ahn, D.; Kim, J. Y.; Song, H. K. ACS Appl. Mater. Interfaces 2016, 8, 4042.
doi: 10.1021/acsami.5b11408
Zhao, X.; Yim, C. -H.; Du, N.; Abu-Lebdeh, Y. Ind. Eng. Chem. Res. 2018, 57, 9062.
doi: 10.1021/acs.iecr.8b01055
Zhao, H.; Wei, Y.; Wang, C.; Qiao, R.; Yang, W.; Messersmith, P. B.; Liu, G. ACS Appl. Mater. Interfaces 2018, 10, 5440.
doi: 10.1021/acsami.7b14645
Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679.
doi: 10.1002/adma.201102421
Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Nat. Commun. 2013, 4, 1943.
doi: 10.1038/ncomms2941
Shao, D.; Zhong, H.; Zhang, L. ChemElectroChem 2014, 1, 1679.
doi: 10.1002/celc.v1.10
Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; Nicolosi, V.; Coleman, J. N. ACS Nano 2016, 10, 3702.
doi: 10.1021/acsnano.6b00218
Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314.
doi: 10.1002/aenm.v8.11
Wang, L.; Liu, T.; Peng, X.; Zeng, W.; Jin, Z.; Tian, W.; Gao, B.; Zhou, Y.; Chu, P. K.; Huo, K. Adv. Funct. Mater. 2018, 28, 1704858.
doi: 10.1002/adfm.v28.3
Liu, B.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G. Nano Lett. 2013, 13, 3414.
doi: 10.1021/nl401880v
Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2565.
doi: 10.1021/ja511181p
Zhao, Y.; Yang, L.; Zuo, Y.; Song, Z.; Liu, F.; Li, K.; Pan, F. ACS Appl. Mater. Interfaces 2018, 10, 27795.
doi: 10.1021/acsami.8b08843
Park, H. -K.; Kong, B. -S.; Oh, E. -S. Electrochem. Commun. 2011, 13, 1051.
doi: 10.1016/j.elecom.2011.06.034
Yook, S. -H.; Kim, S. -H.; Park, C. -H.; Kim, D. -W. RSC Adv. 2016, 6, 83126.
doi: 10.1039/C6RA15839K
Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S. RSC Adv. 2016, 6, 68371.
doi: 10.1039/C6RA12232A
Jeena, M. T.; Bok, T.; Kim, S. H.; Park, S.; Kim, J. Y.; Park, S.; Ryu, J. H. Nanoscale 2016, 8, 9245.
doi: 10.1039/C6NR01559J
Kim, J. S.; Choi, W.; Cho, K. Y.; Byun, D.; Lim, J.; Lee, J. K. J. Power Sources 2013, 244, 521.
doi: 10.1016/j.jpowsour.2013.02.049
Yao, D.; Yang, Y.; Deng, Y.; Wang, C. J. Power Sources 2018, 379, 26.
doi: 10.1016/j.jpowsour.2017.12.086
Choi, N. -S.; Yew, K. H.; Choi, W. -U.; Kim, S. -S. J. Power Sources 2008, 177, 590.
doi: 10.1016/j.jpowsour.2007.11.082
Zhu, X.; Zhang, F.; Zhang, L.; Zhang, L.; Song, Y.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X.; Sun, J.; Liu, Z. Adv. Funct. Mater. 2018, 28, 1705015.
doi: 10.1002/adfm.v28.11
Shan, C.; Wu, K.; Yen, H. J.; Narvaez Villarrubia, C.; Nakotte, T.; Bo, X.; Zhou, M.; Wu, G.; Wang, H. L. ACS Appl. Mater. Interfaces 2018, 10, 15665.
doi: 10.1021/acsami.8b00649
Zhang, Z.; Jiang, Y.; Peng, Z.; Yang, S.; Lin, H.; Liu, M.; Wang, D. ACS Appl. Mater. Interfaces 2017, 9, 32775.
doi: 10.1021/acsami.7b10314
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
(a) The molecular structure of PVDF binder, the SiO powder composite electrodes with PVDF; (b) SEM images: before (left) and after (right) ten charge/discharge cycles; (c) Schematic illustrations of the proposed mechanism
(a) The molecular structure of CMC binder, (b) the SEM image before the cycle, (c) the capacity retentions for A, B, C, and D samples. The horizontal dashed line indicates the expected capacity value for full Si lithiation (Li15Si4). The table inset showing the different coordinates/compositions (wt%) of the prepared electrodes
(a) Proposed working mechanism of the as-prepared double-shelled-yolk-structured silicon (CVSS) electrode with c-CMC-CA as binder, (b) Cross-linked polymer binder (c-CMC-CA), formed by thermally induced condensation of carboxymethyl cellulose and citric acid, and Chemical bonding between CVSS nanoparticles and c-CMC-CA binder via the esterification between-COOH groups on the carbon shell and-OH groups of CMC, (c) Cycling behavior of the CVSS electrode (Coulombic efficiency in inset) with different binders at the current density of 1 A/g
(a) the molecular Structure of PAA binder[73]. (b) Capacity retention (2nd to 30th cycles) of the Si-graphite electrodes with 10 wt% PVdF, PAH, PAH0.4Na0.6, PAH0.2Na0.8, and PANa binders. The electrode loading, including Si, carbon, and binders, was 0.46, 0.55, 0.40, 0.43, and 0.46 mg·cm-2 for PVdF, PAH, PAH0.4Na0.6, PAH0.2Na0.8, and PANa respectively (PAA are same with PAH)[70]. (c) Schematic illustrations of the improved mechanism for the Si-graphite composite electrodes with PAH0.2Na0.8[70]. (d) Schematic illustrations of the proposed mechanism for the improved cycle ability for the SiO powder composite electrodes with PAA binders[73]
(a) The chemical structure and illustrative interaction between crosslinked PAA-PVA and silicon particles[77], (b) Coulombic efficiency of Si electrodes with PAA-PVA, NaCMC, and PAA binders[77], (c) design of the PAA-PANI binder[78], (d) Cross-sectional SEM images of the silicon electrodes with PAA-PVA binder before cycling (left), at the end of the 5th discharge (middle) and at the end of the 5th charge (right)[77], (e) Cycle life of LIBs having various compositions of PAA-PANI[78]
(a) Electrochemical performance of alginate-based nano-Si electrodes (electrode density=0.50 g·cm-3, weight ratio of Si/C=3/1)[83]. Effect of the mechanical integrity of the electrode during the cycling processes: (b) the alginate hydrogel binder[84] and (c) Ca2+-Alg binder[84]. (d) Cycle performances of Si/C anodes with pure SA binder and alginate hydrogel binder at 420 mA/g[84]
(a) Structural formulas and graphical representations of β-CD polymer (β-CDp) binder. (b) Schematic representations of Si-binder configurations with β-CDp binder during lithiation/delithiation, (c) Proposed mechanism of synergistic effect in the β-CDp/Alg hybrid binder, (d) The cycle performance of the Si electrodes based on a hybrid binder approach employing different ratios of β-CDp and Alg. The electrode compositions were Si/Binder/SuperP=60/20/20 by weight, and the loading amounts of Si were 0.6 mg·cm-2, (e) Comparison of the cycle performance of Siβ-CDp with others when measured at 1C
(a) Proposed working mechanism of dynamic cross-linking of β-CDp and 6AD in an electrode matrix, (b) Cycling performance of Si electrode based on the different amounts of 6AD (0~25.5 wt%) at 0.5C (1500 mA·g-1), the ratio of components was fixed as Si/SuperP/binder=60/20/20 wt%. Si mass loading=ca. 0.8 mg·cm-2
(a) Schematic diagram of the polymeric reaction: the generation of water and formation of the crack-blocking GA-PAA composite binder, (b) Reversible Li-extraction capacity and Coulombic efficiency of the Si electrodes for the Li insertion level fixed to 1000 mAh·g-1 at 1 C rate (4200 mA·g-1) over the potential window of 0.01~1 V (Si/C/binder=2/1/1, wt%)
(a) The chemical composition of guar gum (GG) and locust bean gum (LBG)[102], (b) Schematic illustration of lithium-ion transfer in the GG binder[101], (c) Electrochemical performance of SiNP anodes with different binders at 2100 mA·g-1 between 0.01 and 1.2 V[101], (d) cycle performance with limited discharge capacity of 1000 mAh·g-1 at 1000 mA·g-1[101], (e) The symmetrical cycling performance of SiNPs with GG, LBG, Na-CMC and PVDF binders[102]
(a) Chemical structure of XG binder, (b) Concept transfer from macroscopic to nanoscopic world and structural analogy of millipede to that of native-XG towards strong adhesion. A series of small legs in the millipede corresponds to multiple short side chains in native-XG (both colored in red). (c) Electrochemical performance with different charged polymeric binders, the electrodes (Si loading=0.3 mg·cm-2) were measured at 1C (3500 mA·g-1) for both charge and discharge in the voltage range of 0.01~1.0 V vs. Li/Li+
(a) The molecular structure of the PF-type conductive polymers, with two key function groups in PFFOMB, carbonyl and methylbenzoic ester, for tailoring the conduction band and for improving the mechanical binding force, respectively. (b) Cycling performance of Si/PFFOMB electrode between a cycling voltage of 1 V and 0.01 V for over 650 cycles at C/10 rate
(a) Structure of PEDOT:PSS, PEDOT:PSS/SiNP electrode[114]: (b) working mechanism[115], (c) the SEM image[115] and (d) Cyclability of lithiation of these electrodes at 1 A·g-1 after initial cycling at 0.5 A·g-1[115]
(a) The chemical structure and illustrative interaction between cross-linked PVA-PEI and silicon particles[123], (b) the proposed working mechanism of PVA-PEI binder for silicon electrodes[123], (c) the cycling performance and the coulombic efficiency of Si anodes with PVA-PEI and other binders[123]. (d) Schematic representation of the cross-linking of poly(vinylalcohol) (PVA) binders through esterification between PVA and fumaric acid[122], (e) discharge capacities of the composite electrodes employing PVAs with different degrees of cross-linking (0.5C constant current (CC) and constant voltage (CV) charge, 0.5C CC discharge, cut-off voltage: 0.01~1.5 V)[122]