Citation: Wang Xiaoyu, Zhang Yu, Ma Lei, Wei Liangming. Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries[J]. Acta Chimica Sinica, ;2019, 77(1): 24-40. doi: 10.6023/A18070272 shu

Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries

  • Corresponding author: Wei Liangming, lmwei@sjtu.edu.cn
  • Received Date: 16 July 2018
    Available Online: 31 January 2018

    Fund Project: the National Natural Science Foundation of China 51272155Project supported by the National Natural Science Foundation of China (No. 51272155)

Figures(14)

  • In the area of novel power sources, silicon anode in lithium-ion battery, with an ultrahigh theoretical specific capacity of 4200 mAh·g-1, has drawn numerous attentions and got to highlighting spot. Nevertheless, it suffers rapid capacity loss and short cyclability ascribed to the huge volume change during lithiation/delithiation process. So far, one of the most effective methods to ameliorate performances of silicon anode is to modify binders. In this way, the contact integrity among active materials, conductive additives and current collectors can be maintained, which may weaken the cracking and pulverization, keep high specific capacity as well as strengthen the cyclability of silicon anode. Considering both the advantages of silicon anode and the developments of binders, a review on silicon anode in lithium-ion battery will be demonstrated systematically. Besides, we describe the main effects of binders against battery performances. We hope that our review would provide research directions in the developments and applications of binders used in silicon anode of lithium-ion battery.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.  doi: 10.1038/451652a

    2. [2]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  doi: 10.1038/35104644

    3. [3]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energ. Environ. Sci. 2011, 4, 3243.  doi: 10.1039/c1ee01598b

    4. [4]

      Huggins, R. A.; Boukamp, B. A. J. Electrochem. Soc. 1984, 128, 725.

    5. [5]

      Li, J.; Yang, C.; Zhang, J.; Zhang, X.; Xia, B. Acta Chim. Sinica 2010, 68, 646(in Chinese).
       

    6. [6]

      Zhao, L. J.; Zhao, Q.; Niu, Z. Q.; Liang, J.; Tao, Z. L.; Chen, J. Chinese J. Inorg. Chem. 2016, 32, 929.

    7. [7]

      Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.  doi: 10.1038/nmat1368

    8. [8]

      Sharma, R. A. J. Electrochem. Soc. 1976, 123, 1763.  doi: 10.1149/1.2132692

    9. [9]

      Seefurth, R. N.; Sharma, R. A. J. Electrochem. Soc. 1977, 124, 1207.  doi: 10.1149/1.2133529

    10. [10]

      Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838.  doi: 10.1149/1.1739217

    11. [11]

      Deshpande, R.; Cheng, Y. -T.; Verbrugge, M. W. J. Power Sources 2010, 195, 5081.  doi: 10.1016/j.jpowsour.2010.02.021

    12. [12]

      Kamali, A. R.; Fray, D. J. J. New Mater. Electrochem. Syst. 2010, 13, 147.
       

    13. [13]

      Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Chem. Soc. Rev. 2010, 39, 3115.  doi: 10.1039/b919877f

    14. [14]

      Zhang, W. -J. J. Power Sources 2011, 196, 13.  doi: 10.1016/j.jpowsour.2010.07.020

    15. [15]

      Wu, H.; Cui, Y. Nano Today 2012, 7, 414.  doi: 10.1016/j.nantod.2012.08.004

    16. [16]

      Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844.  doi: 10.1021/nl902058c

    17. [17]

      Song, T.; Xia, J.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. C.; Rogers, J. A.; Paik, U. Nano Lett. 2010, 10, 1710.  doi: 10.1021/nl100086e

    18. [18]

      Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Nat. Nanotechnol. 2012, 7, 310.  doi: 10.1038/nnano.2012.35

    19. [19]

      Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; Xiong, J. Adv. Energy Mater. 2018, 8, 1702889.  doi: 10.1002/aenm.v8.12

    20. [20]

      Shi, F.; Song, Z.; Ross, P. N.; Somorjai, G. A.; Ritchie, R. O.; Komvopoulos, K. Nat. Commun. 2016, 7, 11886.  doi: 10.1038/ncomms11886

    21. [21]

      Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Science 2017, 357, 279.  doi: 10.1126/science.aal4373

    22. [22]

      Ryu, J. H.; Kim, J. W.; Sung, Y. -E.; Oh, S. M. Electrochem. Solid-State Lett. 2004, 7, A306.  doi: 10.1149/1.1792242

    23. [23]

      Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Electrochem. Solid-State Lett. 2001, 4, A137.  doi: 10.1149/1.1388178

    24. [24]

      Timmons, A.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1206.  doi: 10.1149/1.2194611

    25. [25]

      Verbrugge, M. W.; Cheng, Y. -T. J. Electrochem. Soc. 2009, 156, A927.  doi: 10.1149/1.3205485

    26. [26]

      Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Nano Lett. 2012, 12, 904.  doi: 10.1021/nl203967r

    27. [27]

      Yen, Y. -C.; Chao, S. -C.; Wu, H. -C.; Wu, N. -L. J. Electrochem. Soc. 2009, 156, A95.  doi: 10.1149/1.3032230

    28. [28]

      Feng, K.; Li, M.; Liu, W.; Kashkooli, A. G.; Xiao, X.; Cai, M.; Chen, Z. Small 2018, 14, 1702737.  doi: 10.1002/smll.201702737

    29. [29]

      Peng, B.; Cheng, F.; Tao, Z.; Chen, J. J. Chem. Phys. 2010, 133, 034701.
       

    30. [30]

      Wilson, A. M.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 326.  doi: 10.1149/1.2043994

    31. [31]

      Yang, J.; Winter, M.; Besenhard, J. O. Solid State Ionics 1996, 90, 281.  doi: 10.1016/S0167-2738(96)00389-X

    32. [32]

      Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Adv. Mater. 2007, 19, 4067.  doi: 10.1002/(ISSN)1521-4095

    33. [33]

      Kang, K.; Song, K.; Heo, H.; Yoo, S.; Kim, G. -S.; Lee, G.; Kang, Y. -M.; Jo, M. -H. Chem. Sci. 2011, 2, 1090.  doi: 10.1039/c0sc00628a

    34. [34]

      Hu, L.; Wu, H.; Hong, S. S.; Cui, L.; McDonough, J. R.; Bohy, S.; Cui, Y. Chem. Commun. (Camb)2011, 47, 367.  doi: 10.1039/C0CC02078H

    35. [35]

      Ren, W.; Wang, C.; Lu, L.; Li, D.; Cheng, C.; Liu, J. J. Mater. Chem. A 2013, 1, 13433.  doi: 10.1039/c3ta11943b

    36. [36]

      Hong, L.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Yu, J. M.; Ning, P. Solid State Ionics 2000, 135, 181.  doi: 10.1016/S0167-2738(00)00362-3

    37. [37]

      Bridel, J. S.; Azaï s, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D. Chem. Mater. 2010, 22, 1229.  doi: 10.1021/cm902688w

    38. [38]

      Du, J.; Lin, N.; Qian, Y. Acta Chim. Sinica 2017, 75, 147(in Chinese).  doi: 10.3969/j.issn.0253-2409.2017.02.003
       

    39. [39]

      Anani, A.; Huggins, R. A. J. Power Sources 1992, 38, 351.  doi: 10.1016/0378-7753(92)80125-U

    40. [40]

      Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045.  doi: 10.1149/1.1837740

    41. [41]

      Wilson, A. M.; Way, B. M.; Dahn, J. R.; van Buuren, T. J. Appl. Phys. 1995, 77, 2363.  doi: 10.1063/1.358759

    42. [42]

      Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Pérès, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M. Adv. Funct. Mater. 2007, 17, 1765.  doi: 10.1002/(ISSN)1616-3028

    43. [43]

      Zhang, Y.; Zhu, Y.; Fu, L.; Meng, J.; Yu, N.; Wang, J.; Wu, Y. Chin. J. Chem. 2017, 35, 21.  doi: 10.1002/cjoc.v35.1

    44. [44]

      Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620(in Chinese).
       

    45. [45]

      Chen, Z.; Christensen, L.; Dahn, J. R. Electrochem. Commun. 2003, 5, 919.  doi: 10.1016/j.elecom.2003.08.017

    46. [46]

      Li, J. -T.; Wu, Z. -Y.; Lu, Y. -Q.; Zhou, Y.; Huang, Q. -S.; Huang, L.; Sun, S. -G. Adv. Energy Mater. 2017, 7, 1701185.  doi: 10.1002/aenm.v7.24

    47. [47]

      Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. ACS Appl. Mater. Interfaces 2010, 2, 3004.  doi: 10.1021/am100871y

    48. [48]

      Du, L.; Zhuang, Q.; Wei, T.; Shi, Y.; Qiang, Y.; Sun, S. Acta Chim. Sinica 2011, 69, 2641(in Chinese).
       

    49. [49]

      Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Electrochem. Solid-State Lett. 2008, 11, A76.  doi: 10.1149/1.2888173

    50. [50]

      Kang, Y. -M.; Go, J. -Y.; Lee, S. -M.; Choi, W. -U. Electrochem. Commun. 2007, 9, 1276.  doi: 10.1016/j.elecom.2007.01.019

    51. [51]

      Kim, I. -s.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 2004, 7, A44.  doi: 10.1149/1.1643792

    52. [52]

      Kim, I. -S.; Kumta, P. N. J. Power Sources 2004, 136, 145.  doi: 10.1016/j.jpowsour.2004.05.016

    53. [53]

      Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A234.  doi: 10.1149/1.2830545

    54. [54]

      Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. J. Power Sources 2010, 195, 2069.  doi: 10.1016/j.jpowsour.2009.10.041

    55. [55]

      Santimetaneedol, A.; Tripuraneni, R.; Chester, S. A.; Nadimpalli, S. P. V. J. Power Sources 2016, 332, 118.  doi: 10.1016/j.jpowsour.2016.09.102

    56. [56]

      Grillet, A. M.; Humplik, T.; Stirrup, E. K.; Roberts, S. A.; Barringer, D. A.; Snyder, C. M.; Janvrin, M. R.; Apblett, C. A. J. Electrochem. Soc. 2016, 163, A1859.  doi: 10.1149/2.0341609jes

    57. [57]

      Drofenik, J.; Gaberscek, M.; Dominko, R.; Poulsen, F. W.; Mogensen, M.; Pejovnik, S.; Jamnik, J. Electrochim. Acta 2003, 48, 883.  doi: 10.1016/S0013-4686(02)00784-3

    58. [58]

      Lestriez, B.; Bahri, S.; Sandu, I.; Roue, L.; Guyomard, D. Electrochem. Commun. 2007, 9, 2801.  doi: 10.1016/j.elecom.2007.10.001

    59. [59]

      Li, J.; Lewis, R. B.; Dahn, J. R. Electrochem. Solid-State Lett. 2007, 10, A17.  doi: 10.1149/1.2398725

    60. [60]

      Mazouzi, D.; Lestriez, B.; Roué, L.; Guyomard, D. Electrochem. Solid-State Lett. 2009, 12, A215.  doi: 10.1149/1.3212894

    61. [61]

      Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J. J. Appl. Electrochem. 2006, 36, 1099.  doi: 10.1007/s10800-006-9191-2

    62. [62]

      Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. J. Electrochem. Soc. 2008, 155, A158.  doi: 10.1149/1.2817828

    63. [63]

      Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. ACS Appl. Mater. Interfaces 2016, 8, 12211.  doi: 10.1021/acsami.6b03357

    64. [64]

      Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Nová k, P. J. Power Sources 2006, 161, 617.  doi: 10.1016/j.jpowsour.2006.03.073

    65. [65]

      Lee, K.; Lim, S.; Go, N.; Kim, J.; Mun, J.; Kim, T. H. Sci. Rep. 2018, 8, 11322.  doi: 10.1038/s41598-018-29705-y

    66. [66]

      Liu, Y.; Tai, Z.; Zhou, T.; Sencadas, V.; Zhang, J.; Zhang, L.; Konstantinov, K.; Guo, Z.; Liu, H. K. Adv. Mater. 2017, 29, 1703028.  doi: 10.1002/adma.201703028

    67. [67]

      Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B. Electrochim. Acta 2017, 258, 453.  doi: 10.1016/j.electacta.2017.11.082

    68. [68]

      Hays, K. A.; Ruther, R. E.; Kukay, A. J.; Cao, P.; Saito, T.; Wood, D. L.; Li, J. J. Power Sources 2018, 384, 136.  doi: 10.1016/j.jpowsour.2018.02.085

    69. [69]

      Yabuuchi, N.; Shimomura, K.; Shimbe, Y.; Ozeki, T.; Son, J. -Y.; Oji, H.; Katayama, Y.; Miura, T.; Komaba, S. Adv. Energy Mater. 2011, 1, 759.  doi: 10.1002/aenm.v1.5

    70. [70]

      Han, Z. -J.; Yabuuchi, N.; Shimomura, K.; Murase, M.; Yui, H.; Komaba, S. Energ. Environ. Sci. 2012, 5, 9014.  doi: 10.1039/c2ee22292b

    71. [71]

      Han, Z. J.; Yamagiwa, K.; Yabuuchi, N.; Son, J. Y.; Cui, Y. T.; Oji, H.; Kogure, A.; Harada, T.; Ishikawa, S.; Aoki, Y.; Komaba, S. Phys. Chem. Chem. Phys. 2015, 17, 3783.  doi: 10.1039/C4CP04939J

    72. [72]

      Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z. -J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T. J. Phys. Chem. C 2011, 116, 1380.

    73. [73]

      Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. J. Phys. Chem. C 2011, 115, 13487.  doi: 10.1021/jp201691g

    74. [74]

      Kang, S.; Yang, K.; White, S. R.; Sottos, N. R. Adv. Energy Mater. 2017, 7, 1700045.  doi: 10.1002/aenm.201700045

    75. [75]

      Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. Angew. Chem. Int. Ed. Engl. 2012, 51, 8762.  doi: 10.1002/anie.v51.35

    76. [76]

      Wei, L.; Chen, C.; Hou, Z.; Wei, H. Sci. Rep. 2016, 6, 19583.  doi: 10.1038/srep19583

    77. [77]

      Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D. Adv. Funct. Mater. 2014, 24, 5904.  doi: 10.1002/adfm.201401269

    78. [78]

      Lee, K.; Lim, S.; Tron, A.; Mun, J.; Kim, Y. -J.; Yim, T.; Kim, T. -H. RSC Adv. 2016, 6, 101622.  doi: 10.1039/C6RA23805J

    79. [79]

      Lee, S. -Y.; Choi, Y.; Hong, K. -S.; Lee, J. K.; Kim, J. -Y.; Bae, J. -S.; Jeong, E. D. Appl. Surf. Sci. 2018, 447, 442.  doi: 10.1016/j.apsusc.2018.04.004

    80. [80]

      Zhang, G.; Yang, Y.; Chen, Y.; Huang, J.; Zhang, T.; Zeng, H.; Wang, C.; Liu, G.; Deng, Y. Small 2018, e1801189.

    81. [81]

      Lü, L.; Lou, H.; Xiao, Y.; Zhang, G.; Wang, C.; Deng, Y. RSC Adv. 2018, 8, 4604.  doi: 10.1039/C7RA13524F

    82. [82]

      Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T. -H. J. Power Sources 2017, 360, 585.  doi: 10.1016/j.jpowsour.2017.06.049

    83. [83]

      Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75.  doi: 10.1126/science.1209150

    84. [84]

      Liu, J.; Zhang, Q.; Wu, Z. Y.; Wu, J. H.; Li, J. T.; Huang, L.; Sun, S. G. Chem. Commun. (Camb)2014, 50, 6386.  doi: 10.1039/c4cc00081a

    85. [85]

      Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S. Phys. Chem. Chem. Phys. 2014, 16, 25628.  doi: 10.1039/C4CP03499F

    86. [86]

      Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036.  doi: 10.1039/C4TA04320K

    87. [87]

      Gu, Y.; Yang, S.; Zhu, G.; Yuan, Y.; Qu, Q.; Wang, Y.; Zheng, H. Electrochim. Acta 2018, 269, 405.  doi: 10.1016/j.electacta.2018.02.168

    88. [88]

      Wu, Z. -Y.; Deng, L.; Li, J. -T.; Huang, Q. -S.; Lu, Y. -Q.; Liu, J.; Zhang, T.; Huang, L.; Sun, S. -G. Electrochim. Acta 2017, 245, 371.  doi: 10.1016/j.electacta.2017.05.094

    89. [89]

      Kim, S.; Jeong, Y. K.; Wang, Y.; Lee, H.; Choi, J. W. Adv. Mater. 2018, 30, e1707594.  doi: 10.1002/adma.v30.26

    90. [90]

      Kong, L. J.; Li, R. Y.; Yang, Y. Q.; Li, Z. J. RSC Adv. 2016, 6, 76344.  doi: 10.1039/C6RA15257K

    91. [91]

      Gendensuren, B.; Oh, E. -S. J. Power Sources 2018, 384, 379.  doi: 10.1016/j.jpowsour.2018.03.009

    92. [92]

      Ibezim, E. C.; Andrade, C. T.; Marcia, C.; Barretto, B.; Odimegwu, D. C.; Lima, F. F. D. Ibnosina J Med BS. 2011, 3, 77.  doi: 10.4103/1947-489X.210876

    93. [93]

      Yue, L.; Zhang, L.; Zhong, H. J. Power Sources 2014, 247, 327.  doi: 10.1016/j.jpowsour.2013.08.073

    94. [94]

      Wu, Z. -H.; Yang, J. -Y.; Yu, B.; Shi, B. -M.; Zhao, C. -R.; Yu, Z. -L. Rare Metals 2016.

    95. [95]

      Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y. ACS Appl. Mater. Interfaces 2018, 10, 16449.  doi: 10.1021/acsami.8b01614

    96. [96]

      Biwer, A.; Antranikian, G.; Heinzle, E. Appl. Microbiol. Biotechnol. 2002, 59, 609.  doi: 10.1007/s00253-002-1057-x

    97. [97]

      Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Nano Lett. 2014, 14, 864.  doi: 10.1021/nl404237j

    98. [98]

      Kwon, T. W.; Jeong, Y. K.; Deniz, E.; Alqaradawi, S. Y.; Choi, J. W.; Coskun, A. ACS Nano 2015, 9, 11317.  doi: 10.1021/acsnano.5b05030

    99. [99]

      Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; Zhang, S. Nano Energy 2015, 12, 178.  doi: 10.1016/j.nanoen.2014.12.011

    100. [100]

      Ling, M.; Zhao, H.; Xiao, X.; Shi, F.; Wu, M.; Qiu, J.; Li, S.; Song, X.; Liu, G.; Zhang, S. J. Mater. Chem. A 2015, 3, 2036.  doi: 10.1039/C4TA05817H

    101. [101]

      Liu, J.; Zhang, Q.; Zhang, T.; Li, J. -T.; Huang, L.; Sun, S. -G. Adv. Funct. Mater. 2015, 25, 3599.  doi: 10.1002/adfm.v25.23

    102. [102]

      Dufficy, M. K.; Khan, S. A.; Fedkiw, P. S. J. Mater. Chem. A 2015, 3, 12023.  doi: 10.1039/C5TA03126E

    103. [103]

      Kuruba, R.; Datta, M. K.; Damodaran, K.; Jampani, P. H.; Gattu, B.; Patel, P. P.; Shanthi, P. M.; Damle, S.; Kumta, P. N. J. Power Sources 2015, 298, 331.  doi: 10.1016/j.jpowsour.2015.07.102

    104. [104]

      Chen, D.; Yi, R.; Chen, S.; Xu, T.; Gordin, M. L.; Wang, D. Solid State Ionics 2014, 254, 65.  doi: 10.1016/j.ssi.2013.11.020

    105. [105]

      Jeong, Y. K.; Kwon, T. -w.; Lee, I.; Kim, T. -S.; Coskun, A.; Choi, J. W. Energ. Environ. Sci. 2015, 8, 1224.  doi: 10.1039/C5EE00239G

    106. [106]

      Klamor, S.; Schroder, M.; Brunklaus, G.; Niehoff, P.; Berkemeier, F.; Schappacher, F. M.; Winter, M. Phys. Chem. Chem. Phys. 2015, 17, 5632.  doi: 10.1039/C4CP04090B

    107. [107]

      Bie, Y.; Yang, J.; Nuli, Y.; Wang, J. J. Mater. Chem. A 2017, 5, 1919.  doi: 10.1039/C6TA09522D

    108. [108]

      Yoon, D. E.; Hwang, C.; Kang, N. R.; Lee, U.; Ahn, D.; Kim, J. Y.; Song, H. K. ACS Appl. Mater. Interfaces 2016, 8, 4042.  doi: 10.1021/acsami.5b11408

    109. [109]

      Zhao, X.; Yim, C. -H.; Du, N.; Abu-Lebdeh, Y. Ind. Eng. Chem. Res. 2018, 57, 9062.  doi: 10.1021/acs.iecr.8b01055

    110. [110]

      Zhao, H.; Wei, Y.; Wang, C.; Qiao, R.; Yang, W.; Messersmith, P. B.; Liu, G. ACS Appl. Mater. Interfaces 2018, 10, 5440.  doi: 10.1021/acsami.7b14645

    111. [111]

      Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679.  doi: 10.1002/adma.201102421

    112. [112]

      Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Nat. Commun. 2013, 4, 1943.  doi: 10.1038/ncomms2941

    113. [113]

      Zhao, S.; Yao, C.; Sun, L.; Xian, X. Ionics 2017, 24, 1039.
       

    114. [114]

      Shao, D.; Zhong, H.; Zhang, L. ChemElectroChem 2014, 1, 1679.  doi: 10.1002/celc.v1.10

    115. [115]

      Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; Nicolosi, V.; Coleman, J. N. ACS Nano 2016, 10, 3702.  doi: 10.1021/acsnano.6b00218

    116. [116]

      Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314.  doi: 10.1002/aenm.v8.11

    117. [117]

      Wang, L.; Liu, T.; Peng, X.; Zeng, W.; Jin, Z.; Tian, W.; Gao, B.; Zhou, Y.; Chu, P. K.; Huo, K. Adv. Funct. Mater. 2018, 28, 1704858.  doi: 10.1002/adfm.v28.3

    118. [118]

      Liu, B.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G. Nano Lett. 2013, 13, 3414.  doi: 10.1021/nl401880v

    119. [119]

      Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2565.  doi: 10.1021/ja511181p

    120. [120]

      Zhao, Y.; Yang, L.; Zuo, Y.; Song, Z.; Liu, F.; Li, K.; Pan, F. ACS Appl. Mater. Interfaces 2018, 10, 27795.  doi: 10.1021/acsami.8b08843

    121. [121]

      Park, H. -K.; Kong, B. -S.; Oh, E. -S. Electrochem. Commun. 2011, 13, 1051.  doi: 10.1016/j.elecom.2011.06.034

    122. [122]

      Yook, S. -H.; Kim, S. -H.; Park, C. -H.; Kim, D. -W. RSC Adv. 2016, 6, 83126.  doi: 10.1039/C6RA15839K

    123. [123]

      Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S. RSC Adv. 2016, 6, 68371.  doi: 10.1039/C6RA12232A

    124. [124]

      Jeena, M. T.; Bok, T.; Kim, S. H.; Park, S.; Kim, J. Y.; Park, S.; Ryu, J. H. Nanoscale 2016, 8, 9245.  doi: 10.1039/C6NR01559J

    125. [125]

      Kim, J. S.; Choi, W.; Cho, K. Y.; Byun, D.; Lim, J.; Lee, J. K. J. Power Sources 2013, 244, 521.  doi: 10.1016/j.jpowsour.2013.02.049

    126. [126]

      Yao, D.; Yang, Y.; Deng, Y.; Wang, C. J. Power Sources 2018, 379, 26.  doi: 10.1016/j.jpowsour.2017.12.086

    127. [127]

      Choi, N. -S.; Yew, K. H.; Choi, W. -U.; Kim, S. -S. J. Power Sources 2008, 177, 590.  doi: 10.1016/j.jpowsour.2007.11.082

    128. [128]

      Zhu, X.; Zhang, F.; Zhang, L.; Zhang, L.; Song, Y.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X.; Sun, J.; Liu, Z. Adv. Funct. Mater. 2018, 28, 1705015.  doi: 10.1002/adfm.v28.11

    129. [129]

      Shan, C.; Wu, K.; Yen, H. J.; Narvaez Villarrubia, C.; Nakotte, T.; Bo, X.; Zhou, M.; Wu, G.; Wang, H. L. ACS Appl. Mater. Interfaces 2018, 10, 15665.  doi: 10.1021/acsami.8b00649

    130. [130]

      Zhang, Z.; Jiang, Y.; Peng, Z.; Yang, S.; Lin, H.; Liu, M.; Wang, D. ACS Appl. Mater. Interfaces 2017, 9, 32775.  doi: 10.1021/acsami.7b10314

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(527)
  • Abstract views(11927)
  • HTML views(4449)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return