Citation: Feng Aihu, Yu Yang, Yu Yun, Song Lixin. Recent Progress in the Removal of Volatile Organic Compounds by Zeolite and Its Supported Catalysts[J]. Acta Chimica Sinica, ;2018, 76(10): 757-773. doi: 10.6023/A18060250 shu

Recent Progress in the Removal of Volatile Organic Compounds by Zeolite and Its Supported Catalysts

  • Corresponding author: Yu Yun, yunyush@mail.sic.ac.cn
  • Received Date: 27 June 2018
    Available Online: 23 October 2018

Figures(6)

  • The emission of volatile organic compounds (VOCs) causes serious harm to the natural environment and human health. Adsorption and catalytic oxidation are effective methods to control VOCs. With the large specific surface area, the uniform and controllable structure, and the surface acid sites, the zeolite is very suitable as the adsorbing materials and the catalyst carrier materials. It has been widely used in the fields of separation, adsorption and catalysis. This paper summarizes the recent research progress in the removal of different VOCs, such as alkanes, aromatic hydrocarbons, aldehydes, ketones, acids, esters, alcohols, and chlorinated hydrocarbons, over different zeolites and their various supported catalysts. The results show that the pore structure and surface properties of zeolite, the species, polarity and hydrophilicity of volatile organic compounds, have important effects on the adsorption properties of zeolite. The surface acidity of zeolite, the types and distribution of active catalysts, the types of VOCs, are the important factors for catalytic oxidation of volatile organic compounds. The synergistic effect between the zeolite and the active component allows the supported catalyst to exhibit excellent catalytic activity. Compared with zeolite-supported metal oxide catalysts, zeolite-supported noble metal catalysts have better catalytic activity for different VOCs, but noble metal catalysts are very expensive. The catalytic activity of zeolite-supported catalysts can be significantly improved by rationally designing multi-component metal oxides. In addition, the further research on the removal of VOCs by zeolite and its supported catalysts both is prospected.
  • 加载中
    1. [1]

      Sarigiannis, D. A.; Karakitsios, S. P.; Gotti, A.; Liakos, I. L.; Katsoyiannis, A. Environ. Int. 2011, 37, 743.  doi: 10.1016/j.envint.2011.01.005

    2. [2]

      Petry, T.; Vitale, D.; Joachim, F. J.; Smith, B.; Cruse, L.; Mascarenhas, R.; Schneider, S.; Singal, M. Regul. Toxicol. Pharmacol. 2014, 69, 55.  doi: 10.1016/j.yrtph.2014.02.010

    3. [3]

      Saqer, S. M.; Kondarides, D. I.; Verykios, X. E. Appl. Catal. B-Environ. 2011, 103, 275.  doi: 10.1016/j.apcatb.2011.01.001

    4. [4]

      Huang, H.; Xu, Y.; Feng, Q.; Leung, D. Y. C. Catal. Sci. Technol. 2015, 5, 2649.  doi: 10.1039/C4CY01733A

    5. [5]

      Yan, Z.; Yuan, Y.; Liu, J.; Li, Q.; Nguyen, N. T.; Zhang, D.; Tian, Y.; Zhu, G. Acta Chim. Sinica 2016, 74, 67.
       

    6. [6]

      Kamal, M. S.; Razzak, S. A.; Hossain, M. M. Atmos. Environ. 2016, 140, 117.  doi: 10.1016/j.atmosenv.2016.05.031

    7. [7]

      Hsu, S. H.; Huang, C. S.; Chung, T. W.; Gao, S. J. Taiwan. Inst. Chem. E. 2014, 45, 2526.  doi: 10.1016/j.jtice.2014.05.028

    8. [8]

      Lemus, J.; Martin-Martinez, M.; Palomar, J.; Gomez-Sainero, L.; Gilarranz, M. A.; Rodriguez, J. J. Chem. Eng. J. 2012, 211-212, 246.  doi: 10.1016/j.cej.2012.09.021

    9. [9]

      Meininghaus, C. K. W.; Prins, R. Microporous Mesoporous Mater. 2000, 35-36, 349.  doi: 10.1016/S1387-1811(99)00233-4

    10. [10]

      Guillemot, M.; Mijoin, J.; Mignard, S.; Magnoux, P. Ind. Eng. Chem. Res. 2007, 46, 4614.  doi: 10.1021/ie0616390

    11. [11]

      López-Fonseca, R.; Gutiérrez-Ortiz, J. I.; González-Velasco, J. R. Appl. Catal. A-Gen. 2004, 271, 39.  doi: 10.1016/j.apcata.2004.02.044

    12. [12]

      Brodu, N.; Sochard, S.; Andriantsiferana, C.; Pic, J. S.; Manero, M. H. Environ. Technol. 2015, 36, 1807.  doi: 10.1080/09593330.2015.1012181

    13. [13]

      Calero, S.; Gomez-Alvarez, P. Phys. Chem. Chem. Phys. 2015, 17, 26451.  doi: 10.1039/C5CP04265H

    14. [14]

      Ji, Y. Y.; Zhang, B.; Wang, X. C. Adv. Mater. Res. 2011, 179-180, 519.  doi: 10.4028/www.scientific.net/AMR.179-180

    15. [15]

      Zhang, W.; Qu, Z.; Li, X.; Wang, Y.; Ma, D.; Wu, J. J. Environ. Sci. 2012, 24, 520.  doi: 10.1016/S1001-0742(11)60751-1

    16. [16]

      Puértolas, B.; López, M. R.; Navarro, M. V.; López, J. M.; Murillo, R.; García, T.; Mastral, A. M. Adsorpt. Sci. Technol. 2010, 28, 761.  doi: 10.1260/0263-6174.28.8-9.761

    17. [17]

      López, J. M.; Navarro, M. V.; García, T.; Murillo, R.; Mastral, A. M.; Varela-Gandía, F. J.; Lozano-Castelló, D.; Bueno-López, A.; Cazorla-Amorós, D. Microporous Mesoporous Mater. 2010, 130, 239.  doi: 10.1016/j.micromeso.2009.11.016

    18. [18]

      Kang, S.; Ma, J.; Wu, Q.; Deng, H. J. Chem. Eng. Data 2018, 63, 2211.  doi: 10.1021/acs.jced.8b00174

    19. [19]

      Yu, Y.; Zheng, L.; Wang, J. J. Air Waste Manage. Assoc. 2012, 62, 1227.  doi: 10.1080/10962247.2012.702186

    20. [20]

      Lu, H. F.; Zhou, C. H.; Zhou, Y.; Huang, H. F.; Chen, Y. F. J. Chem. Eng. Chin. Univ. 2012, 26, 338.  doi: 10.3969/j.issn.1003-9015.2012.02.026

    21. [21]

      Zhou, Y.; Lu, H. F.; Wang, Z. Z.; Chen, Y. F. Chinese J. Environ. Eng. 2012, 6, 1653.

    22. [22]

      Huang, H. F. ; Rong, W. J. ; Gu, Y. Y. ; Chang, Y. Y. ; Chang, R. Q. ; Lu, H. F. Acta Sci. Circum. 2014, 34, 3144.

    23. [23]

      Du, J.; Luan, Z. Q.; Xie, Q.; Ye, P. W.; Li, K.; Wang, X. Q. Environ. Sci. 2013, 34, 4706.

    24. [24]

      Nigar, H.; Navascués, N.; Iglesia, O. D. L.; Mallada, R.; Santamaría, J. Sep. Purif. Technol. 2015, 151, 193.  doi: 10.1016/j.seppur.2015.07.019

    25. [25]

      Aziz, A.; Sajjad, M.; Kim, M.; Kim, K. S. Int. J. Environ. Sci. Technol. 2017, 15, 707.

    26. [26]

      Serra, R. M.; Miró, E. E.; Boix, A. V. Microporous Mesoporous Mater. 2010, 127, 182.  doi: 10.1016/j.micromeso.2009.07.010

    27. [27]

      Liu, M. C.; Hsieh, C. C.; Lee, J. F.; Chang, J. R. Ind. Eng. Chem. Res. 2015, 54, 8678.  doi: 10.1021/acs.iecr.5b01628

    28. [28]

      Zhu, Z.; Xu, H.; Jiang, J.; Wu, H.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 27273.  doi: 10.1021/acsami.7b06173

    29. [29]

      Zhang, Y. Y.; Wang, L. L.; He, L.; Wu, B.; Cheng, Y. Chinese J. Environ. Eng. 2017, 11, 5509.  doi: 10.12030/j.cjee.201611224

    30. [30]

      Aziz, A.; Kim, K. S. Water, Air, Soil Pollut. 2017, 228, 319.  doi: 10.1007/s11270-017-3497-z

    31. [31]

      Aziz, A.; Kim, M.; Kim, S.; Kim, K. S. J. Nanotechnol. Adv. Mater. 2017, 5, 1.

    32. [32]

      Alejandro, S.; Valdés, H.; Mañero, M. H.; Zaror, C. A. Water Sci. Technol. 2013, 66, 1759.

    33. [33]

      Valdés, H.; Solar, V. A.; Cabrera, E. H.; Veloso, A. F.; Zaror, C. A. Chem. Eng. J. 2014, 244, 117.  doi: 10.1016/j.cej.2014.01.044

    34. [34]

      Baur, G. B.; Héroguel, F.; Spring, J.; Luterbacher, J. S.; Ki-wi-Minsker, L. Chem. Eng. J. 2016, 288, 19.  doi: 10.1016/j.cej.2015.11.096

    35. [35]

      Beauchet, R.; Mijoin, J.; Batonneau-Gener, I.; Magnoux, P. Appl. Catal. B-Environ. 2010, 100, 91.  doi: 10.1016/j.apcatb.2010.07.017

    36. [36]

      Zaitan, H.; Mohamed, E. F.; Valdés, H.; Nawdali, M.; Rafqah, S.; Manero, M. H. Acta Chim. Slov. 2016, 63, 798.

    37. [37]

      Lee, D. G.; Kim, J. H.; Lee, C. H. Sep. Purif. Technol. 2011, 77, 312.  doi: 10.1016/j.seppur.2010.12.022

    38. [38]

      Ahmed, M. J.; Mohammed, A. H. A. K.; Kadhum, A. A. H. Transp. Porous Med. 2011, 86, 215.  doi: 10.1007/s11242-010-9617-5

    39. [39]

      Hussein, M. S.; Ahmed, M. J. Mater. Chem. Phys. 2016, 181, 512.  doi: 10.1016/j.matchemphys.2016.06.088

    40. [40]

      Zhang, L.; Peng, Y.; Zhang J.; Chen, L.; Meng, X.; Xiao, F. S. Chinese J. Catal. 2016, 37, 800.  doi: 10.1016/S1872-2067(15)61073-7

    41. [41]

      Chen, C.; Wang, X.; Zhang, J.; Pan, S.; Bian, C.; Wang, L.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F. S. Catal. Lett. 2014, 144, 1851.  doi: 10.1007/s10562-014-1295-4

    42. [42]

      Güvenç, E.; Ahunbay, M. G. J. Phys. Chem. C 2012, 116, 21836.  doi: 10.1021/jp3067052

    43. [43]

      Lee, D. G.; Han, Y. J.; Lee, C. H. Korean J. Chem. Eng. 2012, 29, 1246.  doi: 10.1007/s11814-012-0044-x

    44. [44]

      Kraus, M.; Kopinke, F. D.; Roland, U. J. Microw. Power Electromagn. Energy 2015, 49, 225.  doi: 10.1080/08327823.2015.11689911

    45. [45]

      CherbańSki, R.; Komorowska-Durka, M.; Stefanidis, G. D.; Stankiewicz, A. I. Ind. Eng. Chem. Res. 2011, 50, 8632.  doi: 10.1021/ie102490v

    46. [46]

      Legras, B.; Polaert, I.; Thomas, M.; Estel, L. Appl. Therm. Eng. 2013, 57, 164.  doi: 10.1016/j.applthermaleng.2012.03.034

    47. [47]

      Kim, K. J.; Ahn, H. G. Microporous Mesoporous Mater. 2012, 152, 78.  doi: 10.1016/j.micromeso.2011.11.051

    48. [48]

      Ohgushi, T.; Komarneni, S.; Bhalla, A. S. J. Porous Mater. 2001, 8, 23.  doi: 10.1023/A:1026518200875

    49. [49]

      Legras, B.; Polaert, I.; Estel, L.; Thomas, M. J. Phys. Chem. C 2011, 115, 3090.  doi: 10.1021/jp111423z

    50. [50]

      Gracia, J.; Escuin, M.; Mallada, R.; Navascues, N.; Santamaría, J. J. Phys. Chem. C 2013, 117, 15659.  doi: 10.1021/jp406390b

    51. [51]

      Polaert, I.; Estel, L.; Huyghe, R.; Thomas, M. Chem. Eng. J. 2010, 162, 941.  doi: 10.1016/j.cej.2010.06.047

    52. [52]

      Roland, U.; Kraus, M.; Holzer, F.; Trommler, U.; Kopinke, F. D. Appl. Catal. A-Gen. 2014, 474, 244.  doi: 10.1016/j.apcata.2013.05.013

    53. [53]

      DéGe, P.; Pinard, L.; Magnoux, P.; Guisnet M. Surf. Chem. Catal. 2001, 4, 41.

    54. [54]

      Zhao, S.; Li, K.; Jiang, S.; Li, J. Appl. Catal. B-Environ. 2016, 181, 236.  doi: 10.1016/j.apcatb.2015.08.001

    55. [55]

      Wang, H.; Yang, W.; Tian, P.; Zhou, J.; Tang, R.; Wu, S. Appl. Catal. A-Gen. 2017, 529, 60.  doi: 10.1016/j.apcata.2016.10.016

    56. [56]

      Abbasi, Z.; Haghighi, M.; Fatehifar, E.; Saedy, S. J. Hazard. Mater. 2011, 186, 1445.  doi: 10.1016/j.jhazmat.2010.12.034

    57. [57]

      Jiang, L.; Yang, N.; Zhu, J.; Song, C. Catal. Today 2013, 216, 71.  doi: 10.1016/j.cattod.2013.05.026

    58. [58]

      Barakat, T.; Idakiev, V.; Cousin, R.; Shao, G. S.; Yuan, Z. Y.; Tabakova, T.; Siffert, S. Appl. Catal. B-Environ. 2014, 146, 138.  doi: 10.1016/j.apcatb.2013.05.064

    59. [59]

      Dai, Q.; Yin, L. L.; Bai, S.; Wang, W.; Wang, X.; Gong, X. Q.; Lu, G. Appl. Catal. B-Environ. 2016, 182, 598.  doi: 10.1016/j.apcatb.2015.10.016

    60. [60]

      Sihaib, Z.; Puleo, F.; Garcia-Vargas, J. M.; Retailleau, L.; Descorme, C.; Liotta, L. F.; Valverde, J. L.; Gil, S.; Giroir-Fendler, A. Appl. Catal. B-Environ. 2017, 209, 689.  doi: 10.1016/j.apcatb.2017.03.042

    61. [61]

      Giraudon, J. M.; Elhachimi, A.; Leclercq, G. Appl. Catal. B-Environ. 2008, 84, 251.  doi: 10.1016/j.apcatb.2008.04.023

    62. [62]

      Lu, Y.; Dai, Q.; Wang, X. Catal. Commun. 2014, 54, 114.  doi: 10.1016/j.catcom.2014.05.018

    63. [63]

      Stege, W. P.; Cadús, L. E.; Barbero, B. P. Catal. Today 2011, 172, 53.  doi: 10.1016/j.cattod.2011.02.062

    64. [64]

      Navascués, N.; Escuin, M.; Rodas, Y.; Irusta, S.; Mallada, R.; Santamaría, J. S. Ind. Eng. Chem. Res. 2010, 49, 6941.  doi: 10.1021/ie901843t

    65. [65]

      Feng, H.; Li, C.; Shan, H. Appl. Clay Sci. 2009, 42, 439.  doi: 10.1016/j.clay.2008.05.004

    66. [66]

      Aranzabal, A.; Romero-Sáez, M.; Elizundia, U.; Gonzá-lez-Velasco, J. R.; González-Marcos, J. A. J. Catal. 2012, 296, 165.  doi: 10.1016/j.jcat.2012.09.012

    67. [67]

      Garetto, T. F.; Rincón, E.; Apesteguía, C. R. Appl. Catal. B-Environ. 2004, 48, 167.  doi: 10.1016/j.apcatb.2003.10.004

    68. [68]

      Garetto, T. F.; Rincón, E.; Apesteguía, C. R. Appl. Catal. B-Environ. 2007, 73, 65.  doi: 10.1016/j.apcatb.2006.06.010

    69. [69]

      Luo, H.; Wu, X. D.; Weng, D.; Liu, S.; Ran, R. Rare Metals 2017, 36, 1.  doi: 10.1007/s12598-016-0760-1

    70. [70]

      Zhu, Z.; Lu, G.; Guo, Y.; Guo, Y.; Zhang, Z.; Wang, Y.; Gong, X. Q. ChemCatChem 2013, 5, 2495.  doi: 10.1002/cctc.201300101

    71. [71]

      Park, J. E.; Kim, K. B.; Kim, Y. A.; Song, K. S.; Park, E. D. Catal. Lett. 2013, 143, 1132.  doi: 10.1007/s10562-013-1140-1

    72. [72]

      Leguizamon, A. M. S.; Canafoglia, M. E.; Ocsachoque, M. A.; Lick, I. D.; Botto, I. L. Open Chem. 2016, 14, 335.

    73. [73]

      Yang, W.; Wang, Y.; Zhou, J.; Zhou, J.; Wang, Z.; Cen, K. Chem. Eng. Sci. 2017, 158, 30.  doi: 10.1016/j.ces.2016.09.027

    74. [74]

      Wang, Y. F; Zhou, J. H.; Zhao, Q. C.; Yang, W. J.; Zhou, J. S.; Zhang, Y. W. J. Chem. Ind. Eng. 2017, 68, 896.

    75. [75]

      Marin, I.; Adrover, E.; Vega, D.; Urbiztondo, M.; Pina, M. P.; Mallada, R.; Santamaría, J. Green Process Synth. 2012, 1, 169.

    76. [76]

      Peng, R.; Li S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Appl. Catal. B-Environ. 2018, 220, 462.  doi: 10.1016/j.apcatb.2017.07.048

    77. [77]

      Peng, R.; Sun, X.; Li, S.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Chem. Eng. J. 2016, 306, 1234.  doi: 10.1016/j.cej.2016.08.056

    78. [78]

      Wang, Y.; Yao, S.; Crocker, M.; Zhu, X.; Chen, B.; Xie, J.; Shi, C.; Ma, D. Catal. Sci. Technol. 2015, 5, 4968.  doi: 10.1039/C5CY00758E

    79. [79]

      Wang, Y.; Dai, C.; Chen, B.; Wang, Y.; Shi, C.; Guo, X. Catal. Today 2015, 258, 616.  doi: 10.1016/j.cattod.2015.03.042

    80. [80]

      Chen, C.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F. S. Chem. Commun. 2015, 51, 5936.  doi: 10.1039/C4CC09383F

    81. [81]

      Barakat, T.; Rooke, J. C.; Tidahy, H. L.; Hosseini, M.; Cousin, R.; Lamonier, J. F.; Giraudon, J. M.; Weireld, D. G.; Su, B. L.; Siffert, S. ChemSusChem 2011, 4, 1420.  doi: 10.1002/cssc.v4.10

    82. [82]

      Chen, C.; Wu, Q.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F. S. J. Mater. Chem. A 2015, 3, 5556.  doi: 10.1039/C4TA06407K

    83. [83]

      He, C.; Li, J.; Cheng, J.; Li, L.; Li, P.; Hao, Z.; Xu, Z. P. Ind. Eng. Chem. Res. 2009, 48, 6930.  doi: 10.1021/ie900412c

    84. [84]

      Zhang, Z.; Xu, L.; Wang, Z.; Xu, Y.; Chen, Y. J. Nat. Gas Chem. 2010, 19, 417.  doi: 10.1016/S1003-9953(09)60091-8

    85. [85]

      He, C.; Shen, Q.; Liu, M. J. Porous Mater. 2014, 21, 551.  doi: 10.1007/s10934-014-9802-y

    86. [86]

      He, C.; Li, J.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z. P. Appl. Catal. B-Environ. 2010, 96, 466.  doi: 10.1016/j.apcatb.2010.03.005

    87. [87]

      He, C.; Li, P.; Cheng, J.; Wang, H.; Li J.; Li, Q.; Hao, Z. Appl. Catal. A-Gen. 2010, 382, 167.  doi: 10.1016/j.apcata.2010.04.033

    88. [88]

      He, C.; Li, J.; Zhang, X.; Yin, L.; Chen, J.; Gao, S. Chem. Eng. J. 2012, 180, 46.  doi: 10.1016/j.cej.2011.10.099

    89. [89]

      Chen, C.; Wang, X.; Zhang, J.; Bian, C.; Pan, S.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F. S. Catal. Today 2015, 258, 190.  doi: 10.1016/j.cattod.2015.02.006

    90. [90]

      Wang, Y.; Yang, D.; Li, S.; Chen, M.; Guo, L.; Zhou, J. Mi-croporous Mesoporous Mater. 2018, 258, 17.  doi: 10.1016/j.micromeso.2017.08.052

    91. [91]

      Liu, F.; Zuo, S.; Wang, C.; Li, J.; Xiao, F. S.; Qi, C. Appl. Catal. B-Environ. 2014, 148-149, 106.  doi: 10.1016/j.apcatb.2013.10.054

    92. [92]

      Chen, C.; Zhu, J.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F. S. Appl. Catal. B-Environ. 2013, 140-141, 199.  doi: 10.1016/j.apcatb.2013.03.050

    93. [93]

      Zhang, J.; Rao, C.; Peng, H.; Peng, C.; Zhang, L.; Xu, X.; Liu, W.; Wang, Z.; Zhang, N.; Wang, X. Chem. Eng. J. 2018, 334, 10.  doi: 10.1016/j.cej.2017.10.017

    94. [94]

      Ribeiro, F.; Silva, J. M.; Silva, E.; Vaz, M. F.; Oliveira, F. A. C. Catal. Today 2011, 176, 93.  doi: 10.1016/j.cattod.2011.02.007

    95. [95]

      Silva, E. R.; Silva, J. M.; Oliveira, F. A. C.; Vaz, M. F.; Ribeiro, M. F. Mater. Sci. Forum 2010, 636-637, 104.  doi: 10.4028/www.scientific.net/MSF.636-637

    96. [96]

      Asgari, N.; Haghighi, M.; Shafiei, S. Environ. Prog. Sustain. 2013, 32, 587.  doi: 10.1002/ep.11669

    97. [97]

      Romero, D.; Chlala, D.; Labaki, M.; Royer, S.; Bellat, J. P.; Bezverkhyy, I.; Giraudon, J. M.; Lamonier, J. F. Catalysts 2015, 5, 1479.  doi: 10.3390/catal5031479

    98. [98]

      Zhang, Y.; Zhang, H.; Yan, Y. Microporous Mesoporous Mater. 2018, 261, 244.  doi: 10.1016/j.micromeso.2017.11.006

    99. [99]

      Aziz, A.; Kim, S.; Kim, K. S. J. Environ. Chem. Eng. 2016, 4, 3033.  doi: 10.1016/j.jece.2016.06.021

    100. [100]

      Rokicińska, A.; Drozdek, M.; Dudek, B.; Gil, B.; Michorczyk, P.; Brouri, D.; Dzwigaj, S.; Kuśtrowski, P. Appl. Catal. B-Environ. 2017, 212, 59.  doi: 10.1016/j.apcatb.2017.04.067

    101. [101]

      Hosseini, S. A.; Niaei, A.; Salari, D.; Jodaei, A. Bull. Korean Chem. Soc. 2010, 31, 808.  doi: 10.5012/bkcs.2010.31.04.808

    102. [102]

      Özçelik, Z.; Soylu, G. S. P.; Boz, İ. Chem. Eng. J. 2009, 155, 94.  doi: 10.1016/j.cej.2009.07.013

    103. [103]

      Soylu, G. S. P.; Özçelik, Z.; Boz, İ. Chem. Eng. J. 2010, 162, 380.  doi: 10.1016/j.cej.2010.05.020

    104. [104]

      Huang, H.; Zhang, C.; Wang, L.; Li, G.; Song, L.; Li, G.; Tang, S.; Li, X. Catal. Sci. Technol. 2016, 6, 4260.  doi: 10.1039/C5CY02011E

    105. [105]

      Peng, Y.; Zhang, L.; Chen, L.; Yuan, D.; Wang, G.; Meng, X.; Xiao, F. S. Catal. Today 2017, 297, 182.  doi: 10.1016/j.cattod.2017.04.058

    106. [106]

      Silva, B.; Figueiredo, H.; Santos, V. P.; Pereira, M. F.; Figueiredo, J. L.; Lewandowska, A. E.; Banares, M. A.; Neves, I. C.; Tavares, T. J. Hazard. Mater. 2011, 192, 545.  doi: 10.1016/j.jhazmat.2011.05.056

    107. [107]

      Yosefi, L.; Haghighi, M.; Allahyari, S.; Ashkriz, S. J. Chem. Technol. Biotechnol. 2015, 90, 765.  doi: 10.1002/jctb.2015.90.issue-4

    108. [108]

      Yang, P.; Li, J.; Zuo, S. Chem. Eng. Sci. 2017, 162, 218.  doi: 10.1016/j.ces.2017.01.009

    109. [109]

      Urbutis, A.; Kitrys, S. Cent. Eur. J. Chem. 2014, 12, 492.  doi: 10.2478/s11532-013-0398-x

    110. [110]

      Park, S. J.; Bae, I.; Nam, I. S.; Cho, B. K.; Jung, S. M.; Lee, J. H. Chem. Eng. J. 2012, 195-196, 392.  doi: 10.1016/j.cej.2012.04.028

    111. [111]

      Lin, L. Y.; Wang, C.; Bai, H. Chem. Eng. J. 2015, 264, 835.  doi: 10.1016/j.cej.2014.12.042

    112. [112]

      Zhou, C.; Zhang, H.; Yan, Y.; Zhang, X. Microporous Mes-oporous Mater. 2017, 248, 139.  doi: 10.1016/j.micromeso.2017.04.020

    113. [113]

      Fuku, K.; Goto, M.; Sakano, T.; Kamegawa, T.; Mori, K.; Yamashita, H. Catal. Today 2013, 201, 57.  doi: 10.1016/j.cattod.2012.04.034

    114. [114]

      Yue, L.; He, C.; Zhang, X.; Li, P.; Wang, Z.; Wang, H.; Hao, Z. J. Hazard. Mater. 2013, 244-245, 613.  doi: 10.1016/j.jhazmat.2012.10.048

    115. [115]

      Yue, L.; He, C.; Hao, Z.; Wang, S.; Wang, H. J. Environ. Sci. 2014, 26, 702.  doi: 10.1016/S1001-0742(13)60439-8

    116. [116]

      Wong, C. T.; Abdullah, A. Z.; Bhatia, S. J. Hazard. Mater. 2008, 157, 480.  doi: 10.1016/j.jhazmat.2008.01.012

    117. [117]

      Hosseini, S. A.; Niaei, A.; Salari, D.; Aghazadeh, F. Chin. J. Chem. 2010, 28, 143.  doi: 10.1002/cjoc.v28:2

    118. [118]

      Niaei, A.; Salari, D.; Hosseini, S. A.; Jodael, A. Chin. J. Chem. 2009, 27, 483.  doi: 10.1002/cjoc.v27:3

    119. [119]

      Silva, B.; Figueiredo, H.; Soares, O. S. G. P.; Pereira, M. F. R.; Figueiredo, J. L.; Lewandowska, A. E.; Bañares, M. A.; Neves, I. C.; Tavares, T. Appl. Catal. B-Environ. 2012, 117-118, 406.  doi: 10.1016/j.apcatb.2012.02.002

    120. [120]

      Zhou, Y.; Zhang, H.; Yan, Y. J. Taiwan. Inst. Chem. E. 2018, 84, 162.  doi: 10.1016/j.jtice.2018.01.016

    121. [121]

      Jodaei, A.; Salari, D.; Niaei, A.; Khatamian, M.; Caylak, N. Environ. Technol. 2011, 32, 395.  doi: 10.1080/09593330.2010.501088

    122. [122]

      Jodaei, A.; Salari, D.; Niaei, A.; Khatamian, M.; Hosseini, S. A. J. Environ. Sci. Health A Tox Hazard Subst Environ. Eng. 2011, 46, 50.  doi: 10.1080/10934529.2011.526899

    123. [123]

      Izadkhah, B.; Nabavi, S. R.; Niaei, A.; Salari, D.; Mahmuodi Badiki, T.; Caylak N. J. Ind. Eng. Chem. 2012, 18, 2083.  doi: 10.1016/j.jiec.2012.06.002

    124. [124]

      Li, S.; Hao, Q.; Zhao, R.; Liu, D.; Duan, H.; Dou, B. Chem. Eng. J. 2016, 285, 536.  doi: 10.1016/j.cej.2015.09.097

    125. [125]

      Chen, H.; Zhang, H.; Yan, Y. Ind. Eng. Chem. Res. 2013, 52, 12819.  doi: 10.1021/ie401882w

    126. [126]

      Dou, B.; Li, S.; Liu, D.; Zhao, R.; Liu, J.; Hao, Q.; Bin, F. RSC Adv. 2016, 6, 53852.  doi: 10.1039/C6RA06421C

    127. [127]

      Maupin, I.; Mijoin, J.; Barbier, J.; Bion, N.; Belin, T.; Magnoux, P. Catal. Today 2011, 176, 103.  doi: 10.1016/j.cattod.2011.02.003

    128. [128]

      Fuku, K.; Goto, M.; Kamegawa, T.; Mori, K.; Yamashita, H. Bull. Chem. Soc. Jpn. 2011, 84, 979.  doi: 10.1246/bcsj.20110119

    129. [129]

      Jabłońska, M.; Król, A.; Kukulska-Zając, E.; Tarach, K.; Girman, V.; Chmielarz, L.; Góra-Marek, K. Appl. Catal. B-Environ. 2015, 166-167, 353.  doi: 10.1016/j.apcatb.2014.11.047

    130. [130]

      Wang, L.; Zhang, H.; Yan, Y.; Zhang, X. RSC Adv. 2015, 5, 29482.  doi: 10.1039/C4RA15730C

    131. [131]

      Yan, Y.; Wang, L.; Zhang, H. Chem. Eng. J. 2014, 255, 195.  doi: 10.1016/j.cej.2014.05.141

    132. [132]

      Wang, T.; Zhang, H.; Yan, Y. J. Solid State Chem. 2017, 251, 55.  doi: 10.1016/j.jssc.2017.04.003

    133. [133]

      Chen, H.; Zhang, H.; Yan, Y. Chem. Eng. J. 2014, 254, 133.  doi: 10.1016/j.cej.2014.05.083

    134. [134]

      Yan, Y.; Wang, L.; Zhang, H.; Zhang, X. Sep. Purif. Technol. 2017, 175, 213.  doi: 10.1016/j.seppur.2016.11.022

    135. [135]

      Chen, H.; Zhang, H.; Yan, Y. Chem. Eng. Sci. 2014, 111, 313.  doi: 10.1016/j.ces.2014.02.031

    136. [136]

      Chen, H.; Zhang, H.; Yan, Y. Chem. Eng. J. 2013, 228, 336.  doi: 10.1016/j.cej.2013.04.102

    137. [137]

      Chen, H.; Yan, Y.; Shao, Y.; Zhang, H. RSC Adv. 2014, 4, 55202.  doi: 10.1039/C4RA08769K

    138. [138]

      Zhang, R.; Zhang, B.; Shi, Z.; Liu, N.; Chen, B. J. Mol. Catal. A:Chem. 2015, 398, 223.  doi: 10.1016/j.molcata.2014.11.019

    139. [139]

      Taralunga, M.; Mijoin, J.; Magnoux, P. Appl. Catal. B-Environ. 2005, 60, 163.  doi: 10.1016/j.apcatb.2005.02.024

    140. [140]

      Pinard, L.; Mijoin, J.; Magnoux, P.; Guisnet, M. C. R. Chim. 2005, 8, 457.  doi: 10.1016/j.crci.2004.10.002

    141. [141]

      Rivas, B. D.; López-Fonseca, R.; Gutiérrez-Ortiz, M.; Gutiér-rez-Ortiz, J. I. Appl. Catal. B-Environ. 2011, 101, 317.  doi: 10.1016/j.apcatb.2010.09.034

    142. [142]

      Dai, Q.; Huang, H.; Zhu, Y.; Deng, W.; Bai, S.; Wang, X.; Lu, G. Appl. Catal. B-Environ. 2012, 117-118, 360.  doi: 10.1016/j.apcatb.2012.02.001

    143. [143]

      Li, W. B.; Wang, J. X.; Gong, H. Catal. Today 2009, 148, 81.  doi: 10.1016/j.cattod.2009.03.007

    144. [144]

      Huang, Q.; Xue, X.; Zhou, R. J. Hazard. Mater. 2010, 183, 694.  doi: 10.1016/j.jhazmat.2010.07.081

    145. [145]

      Divakar, D.; Romero-Sáez, M.; Pereda-Ayo, B.; Aranzabal, A.; González-Marcos, J. A.; González-Velasco, J. R. Catal. Today 2011, 176, 357.  doi: 10.1016/j.cattod.2010.11.065

    146. [146]

      Romero-Sáez, M.; Divakar, D.; Aranzabal, A.; Gonzá-lez-Velasco, J. R.; González-Marcos, J. A. Appl. Catal. B-Environ. 2016, 180, 210.  doi: 10.1016/j.apcatb.2015.06.027

    147. [147]

      Zhang, L. L.; Liu, S. Y.; Li, Z. J.; Yao, J.; Wang, G. Y. Chem. J. Chin. Univ. 2014, 35, 812.  doi: 10.7503/cjcu20131076

    148. [148]

      Huang, Q.; Xue, X.; Zhou, R. J. Mol. Catal. A:Chem. 2010, 331, 130.  doi: 10.1016/j.molcata.2010.08.017

    149. [149]

      Rivas, B. D.; Sampedro, C.; López-Fonseca, R.; Gutiérrez-Ortiz, M.; Gutiérrez-Ortiz, J. I. Appl. Catal. A-Gen. 2012, 417-418, 93.  doi: 10.1016/j.apcata.2011.12.028

    150. [150]

      Rivas, B. D.; Sampedro, C.; Ramos-Fernández, E. V.; López-Fonseca, R.; Gascon, J.; Makkee, M.; Gutiérrez-Ortiz, J. I. Appl. Catal. A-Gen. 2013, 456, 96.  doi: 10.1016/j.apcata.2013.02.026

    151. [151]

      Blanch-Raga, N.; Palomares, A. E.; Martínez-Triguero, J.; Valencia, S. Appl. Catal. B-Environ. 2016, 187, 90.  doi: 10.1016/j.apcatb.2016.01.029

    152. [152]

      Dai, Q.; Wang, W.; Wang, X.; Lu, G. Appl. Catal. B-Environ. 2017, 203, 31.  doi: 10.1016/j.apcatb.2016.10.009

    153. [153]

      Huang, Q.; Meng, Z.; Zhou, R. Appl. Catal. B-Environ. 2012, 115-116, 179.  doi: 10.1016/j.apcatb.2011.12.028

    154. [154]

      Huang, Q.; Xue, X.; Zhou, R. J. Mol. Catal. A:Chem. 2011, 344, 74.  doi: 10.1016/j.molcata.2011.04.021

    155. [155]

      Yang, P.; Shi, Z.; Tao, F.; Yang, S.; Zhou, R. Chem. Eng. Sci. 2015, 134, 340.  doi: 10.1016/j.ces.2015.05.024

    156. [156]

      Yang, P.; Xue, X.; Meng, Z.; Zhou, R. Chem. Eng. J. 2013, 234, 203.  doi: 10.1016/j.cej.2013.08.107

    157. [157]

      Yang, P.; Zuo, S.; Zhou, R. Chem. Eng. J. 2017, 323, 160.  doi: 10.1016/j.cej.2017.04.002

    158. [158]

      Tao, F.; Yang, S.; Yang, P.; Shi, Z.; Zhou, R. J. Rare Earth. 2016, 34, 381.  doi: 10.1016/S1002-0721(16)60037-6

    159. [159]

      Sun, P.; Wang, W.; Dai, X.; Weng, X.; Wu, Z. Appl. Catal. B-Environ. 2016, 198, 389.  doi: 10.1016/j.apcatb.2016.05.076

    160. [160]

      Weng, X.; Sun, P.; Long, Y.; Meng, Q.; Wu, Z. Environ. Sci. Technol. 2017, 51, 8057.  doi: 10.1021/acs.est.6b06585

    161. [161]

      Huang, H.; Huang, H.; Feng, Q.; Liu, G.; Zhan, Y.; Wu, M.; Lu, H.; Shu, Y.; Leung, D. Y. C. Appl. Catal. B-Environ. 2017, 203, 870.  doi: 10.1016/j.apcatb.2016.10.083

    162. [162]

      Takeuchi, M.; Yamagawa, H.; Matsuoka, M.; Anpo, M. Res. Chem. Intermed. 2013, 40, 23.

    163. [163]

      Jansson, I.; Yoshiiri, K.; Hori, H.; García-García, F. J.; Rojas, S.; Sánchez, B.; Ohtani, B.; Suárez, S. Appl. Catal. A-Gen. 2016, 521, 208.  doi: 10.1016/j.apcata.2015.12.015

    164. [164]

      Jiang, L.; Nie, G.; Zhu, R.; Wang, J.; Chen, J.; Mao, Y.; Cheng, Z.; Anderson, W. A. J. Environ. Sci. 2017, 55, 266.  doi: 10.1016/j.jes.2016.07.014

    165. [165]

      Yi, H.; Yang, X.; Tang, X.; Zhao, S.; Wang, J.; Cui, X.; Feng, T.; Ma, Y. J. Chem. Technol. Biotechnol. 2017, 92, 2276.  doi: 10.1002/jctb.2017.92.issue-9

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(158)
  • Abstract views(5975)
  • HTML views(1198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return