Citation: Zhang Mao-Mao, Luo Yuan-Yuan, Lu Liang-Qiu, Xiao Wen-Jing. Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts[J]. Acta Chimica Sinica, ;2018, 76(11): 838-849. doi: 10.6023/A18060237 shu

Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts

  • Corresponding author: Lu Liang-Qiu, luliangqiu@mail.ccnu.edu.cn Xiao Wen-Jing, wxiao@mail.ccnu.edu.cn
  • Received Date: 16 June 2018
    Available Online: 6 November 2018

    Fund Project: the National Natural Science Foundation of China 21572074the Natural Science Foundation of Hubei Province 2015CFA033the National Natural Science Foundation of China 21772053the Natural Science Foundation of Hubei Province 2017AHB047Project supported by the National Natural Science Foundation of China (Nos. 21572074, 21772052 and 21772053) and the Natural Science Foundation of Hubei Province (Nos. 2015CFA033 and 2017AHB047)the National Natural Science Foundation of China 21772052

Figures(34)

  • Transition metal catalysis is one of the most important tools to accurately forge chemical bonds in modern organic synthesis. Organocatalysis, a biomimetic catalysis usually with metal-free small organic molecules, is a relatively young research area that started to flourish at the beginning of this century. Catalytic allylic substitutions are a kind of versatile reactions in organic chemistry; the combination of transition metal catalysis and organocatalysis in these reactions not only significantly expands the scope of nucleophiles, but also helps to resolve the stereocontrol issues. This paper will summarize the advance in the field of catalytic asymmetric allylic substitutions through synergetic transition metal-and organocatalysis. According to the source of chirality, these advances will be classified to three types. The first type is the catalytic asymmetric allylic substitutions induced by chiral transition metal catalysts. For these reactions, chiral ligands, including phosphine ligands and hybrid P, N ligands, have been used to achieve the high enantioselectivity. The non-chiral organocatalysts, such as pyrrolidine, Brønsted acids and boron reagents, were only used to activate the nucleophile or assist the generation of π-allyl metal intermediates. The second type is the catalytic asymmetric allylic substitutions induced by chiral organocatalysts. For the reaction of this type, various chiral organocatalysts, including chiral amines, chiral ureas and others, not only activate the substrates, but also control the enantioselectivity of allylic substitutions well through covalent and non-covalent bonds. Non-chiral ligands were only used to improve the catalytic capacity of transition metals. The last type is the catalytic asymmetric allylic substitutions induced by both of chiral transition metal catalysts and chiral organocatalyst. This strategy can not only realize the excellent stereo-control, but also achieve the challenging diastereo-diversity, if there exist continuous chiral centers. Overall, the joint utilization of transition metals and organocatalysts can achieve many significant asymmetric allylic substitutions that were previously difficult to realize through single transition metal catalysis. Meanwhile, the mechanism of representative transformations will be briefly introduced and at last, the prospective in this area will be given, such as simpler allylic sources and greener catalyst system.
  • 加载中
    1. [1]

    2. [2]

      (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387. (b) Tsuji, J. Acc. Chem. Res. 1969, 2, 144.

    3. [3]

      (a) Atkins, K. E.; Walker, W. E.; Manyik, R. M. Tetrahedron. Lett. 1970, 11, 3821. (b) Hata, G.; Takahashi, K.; Miyake, A. J. Chem. Soc., Chem. Commun. 1970, 1392.

    4. [4]

      Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.  doi: 10.1021/ja00447a064

    5. [5]

    6. [6]

      Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.  doi: 10.1021/cr1002744

    7. [7]

      (a) Yan, X. X.; Liang, C. G.; Zhang, Y.; Hong, W.; Cao, B. X.; Dai, L. X.; Hou, X. L. Angew. Chem., Int. Ed. 2005, 44, 6544. (b) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 771. (c) Zhang, K.; Peng, Q.; Hou, X.-L. Angew. Chem., Int. Ed. 2008, 47, 1741. (d) Liu, W.; Chen, D.; Zhu, X.-Z.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734. (e) Lei, B.-L.; Ding, C.-H.; Yang, X.-F.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734. (f) Li, X.-H.; Zheng, B.-H.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2013, 15, 6086.

    8. [8]

    9. [9]

      (a) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1567. (b) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.

    10. [10]

      (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. (b) Chen, Y.-C. Synlett 2008, 13, 1919. (c) Xu, L.-W.; Lu, Y.-X. Org. Biomol. Chem. 2008, 6, 2047.

    11. [11]

      Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.  doi: 10.1002/(ISSN)1521-3773

    12. [12]

      Bihelovic, F.; Matovic, R.; Vulovic, B.; Saicic, R. N. Org. Lett. 2007, 9, 5063.  doi: 10.1021/ol7023554

    13. [13]

      Vulovic, B.; Bihelovic, F.; Matovic, R.; Saicic, R. N. Tetrahedron 2009, 65, 10485.  doi: 10.1016/j.tet.2009.10.006

    14. [14]

      (a) Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. J. Am. Chem. Soc. 2011, 133, 19354. (b) Zhao, X.; Liu, D.; Xie, F.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2011, 9, 1871.

    15. [15]

      Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776.  doi: 10.1002/anie.201403410

    16. [16]

      Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570.  doi: 10.1021/ol5000988

    17. [17]

      Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314  doi: 10.1021/ja0608139

    18. [18]

      Zhou, H.; Yang, H.; Liu, M.; Xia, C.; Jiang, G. Org. Lett. 2014, 16, 5350.  doi: 10.1021/ol502535z

    19. [19]

      Afewerki, S.; Ibrahem, I.; Rydfjord, J.; Breistein, P.; Córdova, A. Chem. Eur. J. 2012, 18, 2972.  doi: 10.1002/chem.201103366

    20. [20]

      Ma, G.; Afewerki, S.; Deiana, L.; Palo-Nieto, C.; Liu, L.; Sun, J.; Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2013, 52, 6050.  doi: 10.1002/anie.201300559

    21. [21]

      Afewerki, S.; Ma, G.; Ibrahem, I.; Liu, L.; Sun, J.; Córdova, A. ACS Catal. 2015, 5, 1266.  doi: 10.1021/cs501975u

    22. [22]

      Halskov, K. S.; N sborg, L.; Tur, F.; J rgensen, K. A. Org. Lett. 2016, 18, 2220.  doi: 10.1021/acs.orglett.6b00852

    23. [23]

      Laugeois, M.; Ponra, S.; Ratovelomanana-Vidal, V.; Michelet, V.; Vitale, M. R. Chem. Commun. 2016, 52, 5332.  doi: 10.1039/C6CC01775D

    24. [24]

      Meazza, M.; Rios, R. Chem. Eur. J. 2016, 22, 9923.  doi: 10.1002/chem.201601893

    25. [25]

      Leth, L. A.; Glaus, F.; Meazza, M.; Fu, L.; Th gersen, M.-K.; Bitsch, E.-A.; J rgensen, K. A. Angew. Chem., Int. Ed. 2016, 55, 15272.  doi: 10.1002/anie.v55.49

    26. [26]

      (a) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J. Org. Chem. 2013, 78, 10853. (b) Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S. Synthesis 2014, 46, 1367.

    27. [27]

    28. [28]

      (a) Muzart, J.; Le Bras, J. Chem. Soc. Rev. 2014, 43, 3003. (b) Koschker, P.; Breit, B. Acc. Chem. Res. 2016, 49, 1524. (c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.

    29. [29]

      Zhou, H.; Wang, Y.; Zhang, L.; Cai, M.; Luo, S. J. Am. Chem. Soc. 2017, 139, 3631.  doi: 10.1021/jacs.7b00437

    30. [30]

    31. [31]

      Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.  doi: 10.1021/ja074678r

    32. [32]

      Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.  doi: 10.1002/anie.v50.40

    33. [33]

    34. [34]

      Boucherif, A.; Duan S.-W.; Yuan, Z.-G.; Lu, L.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2016, 358, 2594.  doi: 10.1002/adsc.v358.16

    35. [35]

      Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.  doi: 10.1021/jacs.6b04364

    36. [36]

      Guo, C.; Janssen-Müller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 4443.  doi: 10.1021/jacs.7b00462

    37. [37]

      Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.  doi: 10.1126/science.1237068

    38. [38]

      Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.  doi: 10.1021/ja5003247

    39. [39]

      Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898.  doi: 10.1002/anie.201408380

    40. [40]

      Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.  doi: 10.1002/anie.201506933

    41. [41]

      Jiang, X.-Y.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.  doi: 10.1021/jacs.6b11692

    42. [42]

      (a) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093. (b) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819. (c) He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513. (d) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080. (e) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599.

    43. [43]

      Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.  doi: 10.1021/jacs.7b12174

    44. [44]

      Jiang, X.; Boehm, P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239.  doi: 10.1021/jacs.7b12824

    45. [45]

      Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.  doi: 10.1002/anie.201504749

    46. [46]

      Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.  doi: 10.1021/ja402740q

    47. [47]

      Lin, H.-C.; Wang, P.-S.; Tao, Z.-L.; Chen, Y.-G.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2016, 138, 14354.  doi: 10.1021/jacs.6b08236

    48. [48]

      Su, Y.-L.; Han, Z.-Y.; Li, Y.-H.; Gong, L.-Z. ACS Catal. 2017, 7, 7917.  doi: 10.1021/acscatal.7b02667

    49. [49]

      Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551.  doi: 10.1021/jacs.8b00868

    50. [50]

      Cong, X.; Zhai, S.; Zeng, X. Org. Chem. Front. 2016, 3, 673.  doi: 10.1039/C6QO00011H

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(44)
  • Abstract views(2085)
  • HTML views(308)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return