Citation: Huang Wenjiao, Zhang Haoyu, Hu Shuozhen, Niu Dongfang, Zhang Xinsheng. Effect of Nitrogen-Containing Functional Groups of Cobalt Phthalocyanine Catalyst on the Oxygen Reduction Performance in Fuel Cells[J]. Acta Chimica Sinica, ;2018, 76(9): 723-728. doi: 10.6023/A18060231 shu

Effect of Nitrogen-Containing Functional Groups of Cobalt Phthalocyanine Catalyst on the Oxygen Reduction Performance in Fuel Cells

  • Corresponding author: Niu Dongfang, dfniu@ecust.edu.cn Zhang Xinsheng, xszhang@ecust.edu.cn
  • Received Date: 12 June 2018
    Available Online: 14 September 2018

    Fund Project: the Shanghai Pujiang Talent Plan 18PJ1402000the Special Foundation for Basic Scientific Research Business of East China University of Science and Technology 222201814008Project supported by the Special Foundation for Basic Scientific Research Business of East China University of Science and Technology (No. 222201814008), and the Shanghai Pujiang Talent Plan (No. 18PJ1402000)

Figures(8)

  • An ultrasonic method and a tetrahydrofuran-mixed dispersion method were used to synthesize two heat-treated cobalt phthalocyanine catalysts supported on carbon nanotubes, CoPc-CNT-S and CoPc-CNT-R, respectively. The ultrasonic process was that mixing cobalt phthalocyanine and carbon nanotubes in isopropanol under ultrasound condition within 30 min, while the tetrahydrofuran-mixed dispersion method was that mixing cobalt phthalocyanine and carbon nanotubes in tetrahydrofuran at 80℃ lasting 4 h. Then the pyrolysis process was carried out in a tube furnace under Argon (Ar) atmosphere with a heating rate of 5℃/min to 800℃ and lasting 2 h. Thermogravimetric Analysis (TGA) results showed that cobalt content of CoPc-CNT-S was 8.1 wt% while CoPc-CNT-R was 7.0 wt%. Moreover, X-ray photoelectron spectroscopy (XPS) results gave a conclusion that nitrogen content of CoPc-CNT-R (5.22%) is twice more than CoPc-CNT-S (2.08%). In comparsion with CoPc-CNT-R, CoPc-CNT-S has more pyrrole nitrogen on the surface. The fuel cell tests in a PEM/AEM hybrid fuel cell showed that the activity and stability of CoPc-CNT-S performed better than CoPc-CNT-R. Power density of CoPc-CNT-S hold at 18.6 mW/cm2 in H2/O2 hybrid AEM/PEM fuel cell for 15 h and CoPc-CNT-R can only hold at 9 mW/cm2. The current density of CoPc-CNT-S maintain at 68 mA/cm2 after stability test in H2/O2 hybrid AEM/PEM fuel cell for 20 h under 50 mV, but the stablity of CoPc-CNT-S fluctuate between 20 mA/cm2 to 40 mA/cm2. The reason can be concluded that ultrasonic method and tetrahydrofuran-mixed dispersion method can cause different kind of nitrogen doped on catalyst to influence electrocatalytic properties. The phenomenon that the electron transfer resistance of CoPc-CNT-S was lower than CoPc-CNT-R after working in PEM/AEM fuel cells for 5 h and 15 h can prove indirectly that the activity of CoPc-CNT-R using for the cathode catalyst H2/O2 hybrid AEM/PEM fuel cell is obviously less than CoPc-CNT-S. These observations may result from the cooperative effect from the similar ratio of pyridinic and pyrrolic nitrogen which may accelerate the catalytic activity of CoPc-CNT-S toward oxygen reduction reaction.
  • 加载中
    1. [1]

      Chang, Z.; Meng, F.; Zhong, H. Chin. J. Chem. 2018, 36, 287.  doi: 10.1002/cjoc.v36.4

    2. [2]

      Wilkinson, D. P.; Zhang, J.; Hui, R.; Fergus, J.; Li, X. Platinum Met. Rev. 2011, 55, 225.  doi: 10.1595/147106711X595102

    3. [3]

      Zhao, T. S.; Li, Y. S.; Shen, S. Y. Front. Energy Power Eng. China. 2010, 4, 443.  doi: 10.1007/s11708-010-0127-5

    4. [4]

      Merle, G.; Wessling, M.; Nijmeijer, K. J. Membr. Sci. 2011, 377, 1.  doi: 10.1016/j.memsci.2011.04.043

    5. [5]

      Ciureanu, M.; Roberge, R. J. Phys. Chem. B 2001, 105, 3531.  doi: 10.1021/jp003273p

    6. [6]

      Steele, B. C.; Heinzel, A. Nature 2001, 414, 345  doi: 10.1038/35104620

    7. [7]

      Zhou, Y.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Hayre, R. O. Energy Environ. Sci. 2010, 10, 1437.
       

    8. [8]

      Hayre, R. O. J. Mater. Chem. 2009, 19, 7830.  doi: 10.1039/b910924b

    9. [9]

      Wu, J.; Yang, H. Acc. Chem. Res. 2013, 46, 1848.  doi: 10.1021/ar300359w

    10. [10]

      He, X.; Gang, M.; He, G. Chin. J. Chem. 2017, 35, 673.  doi: 10.1002/cjoc.v35.5

    11. [11]

      Nie, Y.; Li, L.; Wei, Z. Chem. Soc. Rev. 2015, 44, 2168.  doi: 10.1039/C4CS00484A

    12. [12]

      Wang, B. J. Power Sources 2005, 152, 1.  doi: 10.1016/j.jpowsour.2005.05.098

    13. [13]

      Liu, J.; Li, E.; Ruan, M.; Song, P.; Xu, W. Catalysts 2015, 5, 1167.  doi: 10.3390/catal5031167

    14. [14]

      Titov, A.; Zapol, P.; Kral, P.; Liu, D. J.; Iddir, H.; Baishya, K.; Curtiss, L. A. J. Phys. Chem. C 2009, 113, 21629.  doi: 10.1021/jp810792d

    15. [15]

      Kruusenberg, I.; Mondal, J.; Matisen, L.; Sammelselg, V.; Tammeveski, K. Electrochem. Commun. 2013, 33, 18.  doi: 10.1016/j.elecom.2013.04.005

    16. [16]

      Media, A.; Jang, J.; Kim, S.; Kim, J.; Peck, D.; Jung, D. Korean Chem. Soc. 2015, 36, 919.

    17. [17]

      Huang, W.; Ahlfield, J. M.; Zhang, X.; Kohl, P. A. J. Electrochem. Soc. 2017, 164, 217.

    18. [18]

      Zhang, R.; Peng, Y.; Li, Z.; Li, K.; Ma, J.; Liao, Y.; Zheng, L.; Zuo, X.; Xia, D. Electrochim. Acta 2014, 147, 343.  doi: 10.1016/j.electacta.2014.09.064

    19. [19]

      Ania, C. O.; Seredych, M.; Rodriguez-Castellon, E.; Bandosz, T. J. Appl. Catal. B Environ. 2015, 163, 424.  doi: 10.1016/j.apcatb.2014.08.022

    20. [20]

      Huang, W.; Ahlfield, J. M.; Kohl, P. A.; Zhang, X. Electrochim. Acta 2017, 257, 224.  doi: 10.1016/j.electacta.2017.10.048

    21. [21]

      Xu, X.; Peng, S.; Zhang, J.; Lu, S.; Xiang, Y. Acta Chim. Sinica 2016, 74, 271(in Chinese).
       

    22. [22]

      Ding, L.; Qiao, J.; Dai, X.; Zhang, J.; Zhang, J.; Tian, B. Int. J. Hydrogen Energy 2012, 37, 14103.  doi: 10.1016/j.ijhydene.2012.07.046

    23. [23]

      Kruusenberg, I.; Matisen, L.; Shah, Q.; Kannan, A. M.; Tam-meveski, K. Int. J. Hydrogen Energy 2012, 37, 4406.  doi: 10.1016/j.ijhydene.2011.11.143

    24. [24]

      Chen, R.; Li, H.; Chu, D.; Wang, G. J. Phys. Chem. C 2009, 113, 20689.  doi: 10.1021/jp906408y

    25. [25]

      Ünlü, M.; Zhou, J.; Kohl, P. A. Fuel Cells 2010, 10, 54.

    26. [26]

      Ünlü, M. J. Phys. Chem. C 2009, 113, 11416.

    27. [27]

      Yuan, P.; Chen, J.; Pan, D.; Bao, X. Acta Chim. Sinica 2016, 74, 603(in Chinese).
       

    28. [28]

      Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491.  doi: 10.1039/c0jm00782j

    29. [29]

      Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S.; Chen, Y. ACS Nano 2014, 8, 6856.  doi: 10.1021/nn501506p

    30. [30]

      Artyushkova, K.; Serov, A.; Rojas-Carbonell, S.; Atanassov, P. J. Phys. Chem. C 2015, 119, 25917.  doi: 10.1021/acs.jpcc.5b07653

    31. [31]

      Liang, W.; Chen, J.; Liu, Y.; Chen, S. ACS Catal. 2014, 4, 4170.  doi: 10.1021/cs501170a

    32. [32]

      Zhou, J.; Joseph, K.; Ahlfield, J. M.; Park, D. Y.; Kohl, P. A. J. Electrochem. Soc. 2013, 160, 573.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(12)
  • Abstract views(1601)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return