Citation: Yu Sifan, Fu Xiang, Liu Gengxin, Qiu Huang, Hu Wenhao. Efficient and Facile Synthesis of Chiral Sulfonamides via Asymmetric Multicomponent Reactions[J]. Acta Chimica Sinica, ;2018, 76(11): 895-900. doi: 10.6023/A18060228 shu

Efficient and Facile Synthesis of Chiral Sulfonamides via Asymmetric Multicomponent Reactions

  • Corresponding author: Qiu Huang, qiuhuang@mail.sysu.edu.cn Hu Wenhao, huwh9@mail.sysu.edu.cn
  • Received Date: 11 June 2018
    Available Online: 24 November 2018

    Fund Project: the Guangdong Innovative and Entrepreneurial Research Team Program 2016ZT06Y337Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06Y337)

Figures(5)

  • Sulfonamide is a key structural unit of several groups of vitally synthetic drugs that have been extensively used as antimicrobials, antiretroviral drugs and anticancer agents. In particular, enantiomerically pure sulfonamides represent a rapidly-increasing important substance in new drug discovery due to their unique pharmacological properties. Thus, developing asymmetric synthetic methods involving rapid and highly efficient construction of these compounds is extremely important and highly demanded for medicinal chemists. In our laboratory, we have reported a serial of asymmetric multicomponent reactions via trapping reactive ammonium ylides generated from amines and diazo compounds in the presence of transition metal complexes and chiral phosphoric acids. In this work, an asymmetric three-component reaction of sulfonamides, diazo compounds and imines cooperatively catalyzed by Rh2(OAc)4 and chiral phosphoric acids was reported. This Rh2(OAc)4 and chiral phosphoric acids cooperatively catalyzed three-component reaction of sulfonamides, diazo compounds and imines accomplished with satisfying yields (up to 85%), high diastereoselectivity (>20:1) and excellent enantioselectivity (up to 99% ee), thus providing a rapid access to synthesize enantiomerically enriched sulfonamides bearing two adjacent chiral carbons. Furthermore, this newly developed three-component reaction was carried out on a gram-scale with a lower catalyst loading and without impacting the yield, diastereoselectivity and enantioselectivity. Finally, we explored the further transformation of obtained three-component reaction products:1) treatment of 5aaa with LiAlH4 under 0℃ in THF for 8.0 h gave the corresponding alcohol derivative 6 in 82% yield without changing the diastereoselectivity and enantioselectivity (0.20 mmol scale); 2) treatment of 5aaa with triphosgene and triethylamine under 0℃ in DCM for 1.0 h, gave five-membered heterocyclic sulfoximine derivative 7 bearing three adjacent chiral atoms (2 carbons and 1 sulfur) in 80% yield with perfect diastereoselectivity (>20:1) and remained enantioselectivity (0.20 mmol scale).
  • 加载中
    1. [1]

      (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348. (b) Dai, H.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.; Yu, J. J. Am. Chem. Soc. 2011, 133, 7222. (c) Laha, J. K.; Dayal, N.; Jethava, K. P.; Prajapati, D. V. Org. Lett. 2015. 17, 1296. (d) Deng, Y.; Li, B.; Zhang, T. Environ. Sci. Technol. 2018, 52, 3854. (e) Ran, Y.; Yang, Y.; You, H.; You, J. ACS Catal. 2018, 8, 1796.

    2. [2]

    3. [3]

    4. [4]

      (a) Rocheblave, L.; Bihel, F.; De Michelis, C.; Priem, G.; Courcambeck, J.; Bonnet, B.; Chermann, J. C.; Kraus, J. L. J. Med. Chem. 2002, 45, 3321. (b) Kovalevsky, A. Y.; Ghosh, A. K.; Weber, I. T. J. Med. Chem. 2008, 51, 6599. (c) Gerlits, O. O.; Keen, D. A.; Blakeley, M. P.; Louis, J. M.; Weber, I. T.; Kovalevsky, A. Y. J. Med. Chem. 2017, 60, 2018.

    5. [5]

      (a) Blacklock, T. J.; Sohar, P.; Butcher, J. W.; Lamanec, T.; Grabowski, E. J. J. J. Org. Chem. 1993, 58, 1672. (b) Huang, Q.; Rui, E. Y.; Cobbs, M.; Dinh, D. M.; Gukasyan, H. J.; Lafontaine, J. A.; Mehta, S.; Patterson, B. D.; Rewolinski, D. A.; Richardson, P. F.; Edwards, M. P. J. Med. Chem. 2015, 58, 2821. (c) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed, 2015, 54, 3121. (d) Fu, J.; Sun, F.; Liu, W.; Liu, W.; Gedam, M.; Hu, Q.; Fridley, C.; Quigley, H. A.; Hanes, J.; Pitha, I. Mol. Pharmaceutics. 2016, 13, 2987.

    6. [6]

      (a) Poole, R. M. Drugs 2014, 74, 1559. (b) Scola, P. M.; Sun, L.; Wang, A. X.; Chen, J.; Sin, N.; Venables, B. L.; Sit, S.; Chen, Y.; Cocuzza, A.; Bilder, D.; Zhang, B.; Hewawasam, P.; Tu, Y.; Friborg, J.; Falk, P.; Hernandez, D.; Levine, S.; Chen, C.; Yu, F.; Zvyaga, T.; Good, A. C.; Rajamani, R.; Kish, K.; Tredup, J.; Klei, H. E.; Gao, Q.; Mueller, L.; Colonno, R. J.; Grasela, D. M.; Shi, H.; Sun, L.; Warner, W.; Li, D.; Zhu, J.; Meanwell, N. A.; McPhee, F. J. Med. Chem. 2014, 57, 1730. (c) Zheng, B.; D'Andrea, S. V.; Sun, L. ACS Med. Chem. Lett. 2018, DOI: 10.1021/acsmedchemlett.7b00503.

    7. [7]

      (a) Combs, A. P.; Zhu, W.; Crawley, M. L.; Glass, B.; Polam, P.; Sparks, R. B.; Modi, D.; Takvorian, A.; McLaughlin, E.; Yue, E. W.; Wasserman, Z.; Bower, M.; Wei, M.; Rupar M.; Ala, P. J.; Reid, B. M.; Ellis, B.; Gonneville, L.; Emm, T.; Taylor, N.; Yeleswaram, S.; Li, Y.; Wynn, R.; Burn, T. C.; Hollis, G.; Liu, P. C. C.; Metcalf, B. J. Med. Chem. 2006, 49, 3774. (b) Liu, p.; Lanza, T. J.; Chioda, M.; Jones, C.; Chobanian, H. R.; Guo, Y.; Chang, L.; Kelly, T. M.; Kan, Y.; Wang, S.; Strack, A. M.; Miller, R.; Pang, J.; Lyons, K.; Dragovic, J.; Ning, J. G.; Schafer, W. A.; Welch, C. J.; Gong, X.; Gao, Y.; Hornak, V.; Ball, R. G.; Tsou, N.; Reitman, M. L.; Wyvratt, M. J.; Nargund, R. P.; Lin, L. S. ACS Med. Chem. Lett. 2011, 2, 933. (c) Maso, M. J. D.; Nepomuceno, G. M.; Peter, M. A. S.; Gitre, H. H.; Martin, K. S.; Shaw, J. T. Org. Lett. 2016, 18, 1740. (d) Rajkumar, S.; Clarkson, G. J.; Shipman, M. Org. Lett. 2017, 19, 2058. (e) Li, K.; Weber, A. E.; Tseng, L.; Malcolmson, S. J. Org. Lett. 2017, 19, 4239.

    8. [8]

      (a) Zhong, F.; Wang, Y.; Han, X.; Huang, K.; Lu, Y. Org. Lett. 2011, 13, 1310. (b) Turnpenny, T. W.; Hyman, K. L.; Chemler, S. R. Organometallics 2012, 31, 7819. (c) Hou, W.; Wei, Q.; Liu, G.; Chen, J.; Guo, J.; Peng, Y. Org. Lett. 2015, 17, 4870. (d) Beisel, T.; Diehl, A. M.; Manolikakes, G. Org. Lett. 2016, 18, 4116. (e) Dydio, P.; Key, H. M.; Hayashi, H.; Clark, D. S.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 1750. (f) Mennie, K. M.; Banik, S. M.; Reichert, E. C.; Jacobsen, E. N. J. Am. Chem. Soc. 2018, 140, 4797.

    9. [9]

      (a) Graaff, C. D.; Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969. (b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. (c) Zhang, D.; Hu, W. Chem. Rec. 2017, 17, 739.

    10. [10]

    11. [11]

    12. [12]

      (a) Wang, Y.; Zhu, Y.; Chen, Z.; Mi, A.; Hu, W.; Doyle, M. P. Org. Lett. 2003, 5, 3923. (b) Wang, Y.; Chen, Z.; Mi, A.; Hu, W. Chem. Commun. 2004, 2486. (c) Jiang, J.; Xu, H.; Xi, J.; Ren, B.; Lv, F.; Guo, X.; Jiang, L.; Zhang, Z.; Hu, W. J. Am. Chem. Soc. 2011, 133, 8428. (d) Jiang, L.; Zhang, D.; Wang, Z.; Hu, W. Synthesis 2013, 45, 452. (e) Ren, L.; Lian, X.; Gong, L. Chem. Eur. J. 2013, 19, 3315. (f) Ma, X.; Jiang, J.; Lv, S.; Yao, W.; Yang, Y.; Liu, S.; Xia, F.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13136. (g) Jiang, J.; Ma, X.; Liu, S.; Qian, Y.; Lv, F.; Qiu, L.; Wu, X.; Hu, W. Chem. Commun. 2013, 49, 4238. (h) Lei, R.; Wu, Y.; Dong, S.; Jia, K.; Liu, S.; Hu, W. J. Org. Chem. 2017, 82, 2862.

    13. [13]

      http://ccc.chem.pitt.edu/wipf/MechOMs/evans_pKa_table.pdf

    14. [14]

      Qiu, H.; Li, M.; Jiang, L.; Lv, F.; Zan, L.; Zhai, C.; Doyle, M.; Hu, W. Nat. Chem. 2012, 4, 733.  doi: 10.1038/nchem.1406

    15. [15]

    16. [16]

      (a) Okamura, H.; Bolm, C. Org. Lett. 2004, 6, 1305. (b) Aithagani, S. K.; Dara, S.; Munagala, G.; Aruri, H.; Yadav, M.; Sharma, S.; Vishwakarma, R. A.; Singh, S. P. Org. Lett. 2015, 17, 5547.

    17. [17]

      Dong, S.; Frings, M.; Cheng, H.; Wen, J.; Zhang, D.; Raabe, G.; Bolm, C. J. Am. Chem. Soc. 2016, 138, 2166.  doi: 10.1021/jacs.6b00143

    18. [18]

      Kang, Z.; Zhang, D.; Shou, J.; Hu, W. Org. Lett. 2018, 20, 983.  doi: 10.1021/acs.orglett.7b03916

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(25)
  • Abstract views(1532)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return