Citation: Li Sujia, Lü Jian, Luo Sanzhong. Enantioselective Indium(I)/Chiral Phosphoric Acid-catalyzed[4+2] Cycloaddition of Simple Olefin and β, γ-Unsaturated α-Keto Esters[J]. Acta Chimica Sinica, ;2018, 76(11): 869-873. doi: 10.6023/A18060227 shu

Enantioselective Indium(I)/Chiral Phosphoric Acid-catalyzed[4+2] Cycloaddition of Simple Olefin and β, γ-Unsaturated α-Keto Esters

  • Corresponding author: Lü Jian, lvjian@iccas.ac.cn Luo Sanzhong, luosz@iccas.ac.cn
  • Received Date: 8 June 2018
    Available Online: 26 November 2018

    Fund Project: the National Natural Science Foundation of China 21472193the National Natural Science Foundation of China 21521002the Chinese Academy of Sciences QYZDJ-SSW-SLU023the National Natural Science Foundation of China 21390400Project supported by the National Natural Science Foundation of China (Nos. 21390400, 21521002, 21472193) and the Chinese Academy of Sciences (No. QYZDJ-SSW-SLU023)

Figures(2)

  • Compared with indium(Ⅲ), indium(I) has both vacant p-orbitals and an electron lone pair, showing distinctive catalytic behaviors. However, chiral indium(I) catalysis has been rarely reported. Previously, we have developed asymmetric binary acid catalysis with indium(Ⅲ) and chiral phosphoric acid for a number of enantioselective transformations. Asymmetric binary-acid catalysis in[4+2] cycloaddition of β, γ-unsaturated α-keto esters with different olefins have been reported by our groups over the past five years. In 2013, we developed exo-selective and enantioselective[4+2] cycloaddition of simple industrial feedstock olefins, such as propene and isobutene, styrene and so on, catalyzed by In(BArF)3/1a. However, the reaction with electron-rich olefins, such as 4-methoxylstyrene did not work very well by indium(Ⅲ) catalysis due to uncontrolled polymerization side pathway. Very recently, we developed a new binary acid system InCl/1a, which could catalyze enantioselective[4+2] annulation of β, γ-unsaturated α-keto esters with much more electron-rich alkoxyallenes. In this study, we reported that the binary acid InCl and 1a was an effective and exo-selective catalyst for the[4+2] cycloaddition of simple olefins. In the presence of InCl (10 mol%) and chiral phosphoric acid 1a (10 mol%), the reaction occurred smoothly to afford the desired cycloadducts in moderate to good yields (20%~93%), with excellent diastereoselectivity (>95:5, exo/endo) and enantioselectivity (up to 99% ee) under the room temperature in CHCl3. Different olefins, such as styrenes 2, ring-strained norbornene 5a, norbornadiene 5b, and cyclopentadiene dimer 5c all worked well with excellent stereoselectivity under the optimal reaction conditions. More importantly, when 4-methoxylstyrene is used, the reaction can proceeded smoothly to afford[4+2] adduct 4k in 70% yield and good stereoselectivity (>95:5 dr, and 88% ee). The typical procedure for asymmetric[4+2] cycloaddition is as follows:To a dry reaction tube was added chiral phosphoric acid 1a (0.005 mmol, 5 mol%), InCl (0.005 mmol, 5 mol%), 4 MS (10 mg), 3 (0.1 mmol), then CHCl3 (0.5 mL) and 2 or 5 (0.5 mmol) was added to the mixture. The mixture was stirred for 24 h at room temperature. The mixture was purified by column chromatography to give the desired cycloaddition products 4 or 6.
  • 加载中
    1. [1]

      (a) Gewali, M. B.; Tezuka, Y.; Banskota, A. H.; Ali, M. S.; Saiki, I.; Dong, H.; Kadota, S. Org. Lett. 1999, 1, 1733. (b) Tezuka, Y.; Gewali, M. B.; Ali, M. S.; Banskota, A. H.; Kadota, S. J. Nat. Prod. 2001, 64, 208. (c) Whiting, D. A. Nat. Prod. Rep. 1987, 4, 499.

    2. [2]

      (a) Fehr, C.; Galindo, J.; Ohloff, G. Helv. Chim. Acta 1981, 64, 1247. (b) Sera, A.; Ohara, M.; Yamada, H.; Egashira, E.; Ueda, N.; Setsune, J.-I. Chem. Lett. 1990, 19, 2043. (c) Dujardin, G.; Maudet, M.; Brown, E. Tetrahedron Lett. 1994, 35, 8619. (d) Leconte, S.; Dujardin, G.; Brown, E. Eur. J. Org. Chem. 2000, 639. (e) Maingot, L.; Leconte, S.; Chataigner, I.; Martel, A.; Dujardin, G. Org. Lett. 2009, 11, 1619. (f) Brown, E.; Dujardin, G.; Maudet, M. Tetrahedron 1997, 53, 9679.

    3. [3]

      (a) Lv, J.; Zhang, L.; Luo, S.; Cheng, J.-P. Angew. Chem., Int. Ed. 2013, 52, 9786; (b) Matumura, Y.; Suzuki, T.; Sakakura, A.; Ishihara, K. Angew. Chem., Int. Ed. 2014, 53, 6131.

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      For reviews on indium (Ⅲ) as a Lewis acid, see (a) Ranu, B. C.; Eur. J. Org. Chem. 2000, 2347. (b) Ghosh, R. Maiti, S. J. Mol. Catal. A: Chem. 2007, 264, 1. (c) Osten, K. M.; Mehrkhodavandi, P. Acc. Chem. Res. 2017, 50, 2861.

    8. [8]

      For recent selected examples of chiral indium(Ⅲ) Lewis acid- catalysis, see: (a) Zhao, J.-F.; Tsui, H.-Y.; Wu, P.-J.; Lu, J.; Loh, T.-P. J. Am. Chem. Soc. 2008, 130, 16492. (b) Yu, Z.; Liu, X.; Dong, Z.; Xie, M.; Feng, X. Angew. Chem. Int. Ed. 2008, 47, 1308. (c) Lin, L.; Kuang, Y.; Liu, X.; Feng, X. Org. Lett. 2011, 13, 3868. (d) Zhao, J.-F.; Tan, B.-H.; Loh, T.-P. Chem. Sci. 2011, 2, 349. (e) Zhao, B. Loh, T.-P. Org. Lett. 2013, 15, 2914. (f) Praveen, C.; Montaignac, B.; Vitale, M. R.; Ratovelomanana-Vidal, V.; Michelet, V. ChemCatChem 2013, 5, 2395. (g) Zhang, X.; Wang, M.; Ding, R.; Xu, Y.-H.; Loh, T.-P. Org. Lett. 2015, 17, 2736. (h) Wang, L.; Lv, J.; Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 10867.

    9. [9]

      (a) Schneider, U.; Kobayashi, S. Acc. Chem. Res. 2012, 45, 1331. (b) Tuck, D. G. Chem. Soc. Rev. 1993, 22, 269. (c) Andrews, C. G. Macdonald, C. L. B. Angew. Chem., Int. Ed. 2005, 44, 7453. (d) Cooper, B. F. T.; Andrews, C. G.; Macdonald, C. L. B. J. Organmet. Chem. 2007, 692, 2843. (e) Allan, C. J.; Cooper, B. F. T.; Cowley, H. J.; Rawson, J. M.; Macdonald, C. L. B. Chem. Eur. J. 2013, 19, 14470.

    10. [10]

      (a) Chakrabarti, A.; Konishi, H.; Yamaguchi, M.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2010, 49, 1838. (b) Huang, Y.-Y.; Chakrabarti, A.; Morita, N.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 11121. (c) Li, S.; Lv, J.; Luo, S. Org. Chem. Front. 2018, 5, 1787.

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(10)
  • Abstract views(765)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return