Citation: Yang Ying, Chen Tian, Pan Dequn, Zhang Zheng, Guo Xueyi. Research Progress of Bifacial Solar Cells with Transparent Counter Electrode[J]. Acta Chimica Sinica, ;2018, 76(9): 681-690. doi: 10.6023/A18050197 shu

Research Progress of Bifacial Solar Cells with Transparent Counter Electrode

  • Corresponding author: Guo Xueyi, xyguo@csu.edu.cn
  • Received Date: 12 May 2018
    Available Online: 29 September 2018

    Fund Project: the National Natural Science Foundation of China 61774169Third Innovation Driven Project of Central South University 2016CX022Undergraduate student of Central South University cx20170271Graduate student of Central South University 1053320170565Graduate student of Central South University 1053320170116Undergraduate student of Central South University 201710533300Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province 2016JJ3140Project supported by the National Natural Science Foundation of China (No. 61774169), Third Innovation Driven Project of Central South University (No. 2016CX022), Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province (No. 2016JJ3140), Graduate student of Central South University (Nos. 1053320170116, 1053320170565) and Undergraduate student of Central South University (Nos. cx20170271, 201710533300)

Figures(9)

  • In recent years, solar cells (including dye-sensitized solar cells (DSSCs), quantum dots sensitized solar cells (QDSCs), and perovskite solar cells (PSCs)) have attracted wide attention due to their low cost, light weight, and high efficiency. Compared with traditional solar cells with opaque counter electrodes where the sunlight can only pass from the photoanode, bifacial solar cells, which are composed of photoanode, electrolyte, transparent counter electrode, hole transport layer can realize the purpose that sunlight can pass through the photoanode and the transparent counter electrode (CE) at the same time, which can reduce the loss of sunlight and greatly broad the light utilization of device to achieve improved opto-electronic performance. In the entire electrochemical cycle, the transparent counter electrode is regarded as reducing agent in reducing the oxidation state I3- in the electrolyte to the reduced state I- so the electrocatalytic activity, chemical stability, electrical conductivity of the transparent counter electrode directly influences the rear side photo-to-electricity efficiency of device and the preparation of transparent counter electrodes is significantly important for the device. Therefore, it is necessary to study the effect of the counter electrode on the photoelectric conversion efficiency of the bifacial solar cells. In view of the problems of low transmittance, high cost, and low light utilization of traditional CE, the transparent CE of bifacial solar cells with high power conversion efficiency and low cost are preferred. The transparent CE of bifacial DSSCs, QDSCs and PSCs are comprehensively discussed in this paper. The influence of materials choosing and interfacial modification methods of transparent counter electrode on the photovoltaic performances of bifacial devices are analyzed. The transparent counter electrodes materials mainly include metals and alloys, sulfides, selenides, conductive polymers, and so on. In conclusion, bifacial solar cells mainly have the following problems:high reflectivity of metal electrodes, corrosion of the sulfide on the electrodes and the stability of the conductive polymers. The further application prospects of these kinds of bifacial solar cells is proposed.
  • 加载中
    1. [1]

      Lu, Y.; Ding, Y. F.; Wang, J. Y.; Pei, J. Chin. J. Org. Chem. 2016, 36, 2272(in Chinese).
       

    2. [2]

      Chen, H. J. Chin. J. Org. Chem. 2016, 36, 460(in Chinese).
       

    3. [3]

      Kong, L. J.; Zhou, X. Y.; Fan, S. Y.; Li, Z. J.; Gu, Z. G. Acta Chim. Sinica 2016, 74, 620(in Chinese).
       

    4. [4]

      Gao, S. M.; Hu, Y. H.; Duan, Z. M.; Gao, X. K. Chin. J. Chem. 2016, 34, 689.  doi: 10.1002/cjoc.v34.7

    5. [5]

      Poudel, P.; Thapa, A.; Elbohy, H.; Qiao, Q. Nano Energy 2014, 5, 116.  doi: 10.1016/j.nanoen.2014.02.003

    6. [6]

      Ju, M. J.; Jeon, I. Y.; Lim, K.; Kim, J. C.; Choi, H. J.; Choi, I. T.; Yu, K. E.; Kwon, Y. J.; Ko, J.; Lee, J. J. Energy Environ. Sci. 2014, 7, 1044.  doi: 10.1039/C3EE43732A

    7. [7]

      Lee, C. P.; Lin, C. A.; Wei, T. C.; Tsai, M. L.; Meng, Y.; Li, C. T.; Ho, K. C.; Wu, C. I.; Lau, S. P.; He, J. H. Nano Energy 2015, 18, 109.  doi: 10.1016/j.nanoen.2015.10.008

    8. [8]

      Ito, S.; Zakeeruddin, S. M.; Comte, P.; Liska, P.; Kuang, D.; Graetzel, M. Nat. Photonics 2008, 2, 693.  doi: 10.1038/nphoton.2008.224

    9. [9]

      Park, C. Y.; Lee, J. H.; Choi, B. H. Org. Electron. 2013, 14, 3172.  doi: 10.1016/j.orgel.2013.09.010

    10. [10]

      Shin, Y. H.; Kang, S. B.; Lee, S.; Kim, J. J.; Kim, H. K. Org. Electron. 2013, 14, 926.  doi: 10.1016/j.orgel.2012.12.036

    11. [11]

      Won, J. Y.; Han, Y. H.; Seol, H. J.; Lee, K. J.; Choi, R.; Jeong, J. K. Thin Solid Films 2016, 603, 268.  doi: 10.1016/j.tsf.2016.02.032

    12. [12]

      Yan, L. T.; Rath, J. K.; Schropp, R. E. I. Appl. Surf. Sci. 2011, 257, 9461.  doi: 10.1016/j.apsusc.2011.06.035

    13. [13]

      Morgenstern, F. S. F.; Kabra, D.; Massip, S.; Brenner, T. J. K.; Lyons, P. E.; Coleman, J.; Friend, R. H. Appl. Phys. Lett. 2011, 99, 242.
       

    14. [14]

      De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. ACS Nano 2009, 3, 1767.  doi: 10.1021/nn900348c

    15. [15]

      Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Science 2004, 305, 1273.  doi: 10.1126/science.1101243

    16. [16]

      Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L.-B.; Gruner, G. Appl. Phys. Lett. 2006, 88, 233506.  doi: 10.1063/1.2209887

    17. [17]

      Barnes, T. M.; Bergeson, J. D.; Tenent, R. C.; Larsen, B. A.; Teeter, G.; Jones, K. M.; Blackburn, J. L.; van de Lagemaat, J. Appl. Phys. Lett. 2010, 96, 243309.  doi: 10.1063/1.3453445

    18. [18]

      Na, S. I.; Kim, S. S.; Jo, J.; Kim, D. Y. Adv. Mater. 2008, 20, 4061.  doi: 10.1002/adma.v20:21

    19. [19]

      Ouyang, J.; Xu, Q. F.; Chu, C. W.; Yang, Y.; Li, G.; Shinar, J. Polymer 2004, 45, 8443.  doi: 10.1016/j.polymer.2004.10.001

    20. [20]

      Zhu, H. Y.; Huang, W.; Huang, Y L.; Wang, W. Z. Acta Chim. Sinica 2016, 74, 429(in Chinese).  doi: 10.3866/PKU.WHXB201511201
       

    21. [21]

      Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574.  doi: 10.1038/nnano.2010.132

    22. [22]

      Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics 2010, 4, 611.  doi: 10.1038/nphoton.2010.186

    23. [23]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  doi: 10.1038/nmat1849

    24. [24]

      Chen, P. Y.; Li, C. T.; Lee, C. P.; Vittal, R.; Ho, K. C. Nano Energy 2015, 12, 374.  doi: 10.1016/j.nanoen.2015.01.010

    25. [25]

      Lee, Y. L.; Chen, C. L.; Chong, L. W.; Chen, C. H.; Liu, Y. F.; Chi, C. F. Electrochem. Commun. 2010, 12, 1662.  doi: 10.1016/j.elecom.2010.09.022

    26. [26]

      Tai, Q.; Chen, B.; Guo, F.; Xu, S.; Hu, H.; Sebo, B.; Zhao, X.-Z. ACS Nano 2011, 5, 3795.  doi: 10.1021/nn200133g

    27. [27]

      Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.-H.; Guo, X.-Y. Nano Energy 2016, 26, 123.  doi: 10.1016/j.nanoen.2016.05.010

    28. [28]

      Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.-H.; Sun, Z.-B.; Wang, J. H.; Zhou, C. H.; Wang, Y. W.; Guo, X. Y.; Chen, P. K.; Yu, X. F. Adv. Mater. 2016, 28, 8937.  doi: 10.1002/adma.v28.40

    29. [29]

      Achari, M. B.; Elumalai, V.; Vlachopoulos, N.; Safdari, M.; Gao, J.; Gardner, J. M.; Kloo, L. PCCP 2013, 15, 17419.  doi: 10.1039/c3cp52869c

    30. [30]

      Wang, X.; Kulkarni, S. A.; Ito, B. I.; Batabyal, S. K.; Nonomura, K.; Wong, C. C.; Grätzel, M.; Mhaisalkar, S. G.; Uchida, S. ACS Appl. Mater. Interfaces 2013, 5, 444.  doi: 10.1021/am3025454

    31. [31]

      O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  doi: 10.1038/353737a0

    32. [32]

      Huang, J.-R.; Tan, X.; Yu, T.; Zhao, L.; Wu, T.-Y. Mater. Rev. 2011, 25, 134(in Chinese).
       

    33. [33]

      Yang, Y.; Zhang, Z; Gao, J.; Lin, Z H; Yan, J Y; Guo, X Y. J. Inorg. Mater. 2017, 32, 25(in Chinese).
       

    34. [34]

      Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys.-Chim. Sin. 2011, 27, 2255(in Chinese).  doi: 10.3866/PKU.WHXB20110901

    35. [35]

      Lee, K. M.; Lin, L. C.; Chen, C. Y. Electrochim. Acta 2014, 135, 578.  doi: 10.1016/j.electacta.2014.05.004

    36. [36]

      Zhang, H. H.; Tang, Q. W.; He, B. L. RSC Adv. 2015, 5, 51600.  doi: 10.1039/C5RA04735H

    37. [37]

      Cheng, C. E.; Lin, Z. K.; Lin, Y. C.; Lei, B. C.; Chang, C. S.; Chien, F. S.-S. Jpn. J. Appl. Phys. 2017, 56, 012301.  doi: 10.7567/JJAP.56.012301

    38. [38]

      Bahramian, A.; Vashaee, D. Sol. Energy Mater. Sol. Cells 2015, 143, 284.  doi: 10.1016/j.solmat.2015.07.011

    39. [39]

      Wu, J. H.; Li, Y.; Tang, Q. W.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Meng, L. J. Sci. Rep. 2014, 4, 4028.
       

    40. [40]

      He, B. L.; Zhang, X.; Zhang, H. N.; Li, J. Y.; Meng, Q.; Tang, Q. W. Sol. Energy. 2017, 147, 470.  doi: 10.1016/j.solener.2017.03.059

    41. [41]

      Rong, Y. G.; Ku, Z. L.; Li, X.; Han, H. W. J. Mater. Sci. 2015, 50, 3803.  doi: 10.1007/s10853-015-8945-9

    42. [42]

      Li, H. G.; Xiao, Y. M.; Han, G. Y. J. Power Sources 2017, 342, 709.  doi: 10.1016/j.jpowsour.2017.01.007

    43. [43]

      Xu, S. J.; Luo, Y. F.; Liu, G. W.; Qiao, G. J.; Zhong, W.; Xiao, Z. H.; Luo, Y. P.; Ou, H. Electrochim. Acta 2015, 156, 20.  doi: 10.1016/j.electacta.2014.12.174

    44. [44]

      Song, D. D.; Li, M. C.; Li, Y. F.; Zhao, X.; Jiang, B.; Jiang, Y. J. ACS Appl. Mater. Interfaces 2014, 6, 7126.  doi: 10.1021/am500082x

    45. [45]

      Han, J.; Kim, H.; Kim, D. Y.; Jo, S. M.; Jang, S.-Y. ACS Nano 2010, 4, 3503.  doi: 10.1021/nn100574g

    46. [46]

      Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. ACS Nano 2010, 4, 6203.  doi: 10.1021/nn1016428

    47. [47]

      Duan, Y. Y.; Tang, Q. W.; Liu, J.; He, B. L.; Yu, L. M. Angew. Chem.-Int. Ed. 2014, 53, 14569.  doi: 10.1002/anie.201409422

    48. [48]

      Duan, Y. Y.; Tang, Q. W.; He, B. L.; Li, R.; Yu, L. M. Nanoscale 2014, 6, 12601.  doi: 10.1039/C4NR03900A

    49. [49]

      Liu, J.; Tang, Q. W.; He, B. L.; Yu, M. L. J. Power Sources 2015, 282, 79.  doi: 10.1016/j.jpowsour.2015.02.045

    50. [50]

      Yang, P. Z.; Zhao, Z. Y.; Zhu, L.; Tang, Q. W. J. Alloys Compd. 2015, 648, 930.  doi: 10.1016/j.jallcom.2015.07.082

    51. [51]

      Murakami, T. N.; Kay, A.; Ito, S.; Wang, Q.; Nazeeruddin, M. K.; Bessho, T.; Liska, P.; Baker, R. H.; Comte, P.; Pechy, P. J. Electrochem. Soc. 2006, 153, A2255.  doi: 10.1149/1.2358087

    52. [52]

      Chen, J. K.; Li, K. X; Luo, Y. H.; Guo, X. Z.; Li, D. M.; Deng, M. H.; Huang, S. Q.; Meng, Q. B. Carbon 2009, 47, 2704.  doi: 10.1016/j.carbon.2009.05.028

    53. [53]

      Meng, X. L.; Li, H. Y.; Wang, J. S. Chem. J. Chin. Univ. 2012, 33, 1021(in Chinese).  doi: 10.3969/j.issn.0251-0790.2012.05.028

    54. [54]

      Ma, C.; Dong, W.; Fang, L.; Zheng, F. G.; Shen, M. R.; Wang, Z. L. Thin Solid Films 2012, 520, 5727.  doi: 10.1016/j.tsf.2012.04.011

    55. [55]

      Lan, Z.; Wu, J. H.; Lin, J. M.; Huang, M. L.; Wang, X. X. Thin Solid Films 2012, 522, 425.  doi: 10.1016/j.tsf.2012.08.017

    56. [56]

      Li, X.; Gan, W.-P.; Zhang, W.-C.; Li, L.-L.; Huang, X.-Q. Acta, Materiae Compositae Sinica 2012, 29, 1(in Chinese).
       

    57. [57]

      Zhang, K.-Q.; Zhang, X.-L. New Chem. Mater. 2010, 38, 27(in Chinese).
       

    58. [58]

      Guo, X. Y.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D. Q.; Zhou, C.; Shen, J.; Hong, J.; Yang, Y. Mater. Today Energy 2017, 5, 320.  doi: 10.1016/j.mtener.2017.07.013

    59. [59]

      Ross, R. T.; Nozik, A. J. J. Appl. Phys. 1982, 53, 3813.  doi: 10.1063/1.331124

    60. [60]

      Karki, I. B.; Nakarmi, J. J.; Mandal, P. K.; Chatterjee, S. Nepal J. Sci. Tech. 2013, 13, 179.

    61. [61]

      Kushwaha, S.; Bahadur, L. J. Lumin. 2015, 161, 426.  doi: 10.1016/j.jlumin.2015.01.054

    62. [62]

      Gorer, S.; Hodes, G. J. Phys. Chem. 1994, 98, 5338.  doi: 10.1021/j100071a026

    63. [63]

      Jiao, S.; Du, J.; Du, Z. L.; Long, D. H.; Jiang, W. Y.; Pan, Z. X.; Li, Y.; Zhong, X. H. J. Phys. Chem. Lett. 2017, 8, 559.  doi: 10.1021/acs.jpclett.6b02864

    64. [64]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-I.; Hanaya, M. Chem. Commun. 2015, 51, 15894.  doi: 10.1039/C5CC06759F

    65. [65]

      Dao, V.-D.; Choi, Y.; Yong, K.; Larina, L. L.; Shevaleevskiy, O.; Choi, H. S. J. Power Sources 2015, 274, 831.  doi: 10.1016/j.jpowsour.2014.10.095

    66. [66]

      Seol, M.; Kim, H.; Tak, Y.; Yong, K. Chem. Commun. 2010, 46, 5521.  doi: 10.1039/c0cc00542h

    67. [67]

      Ma, C. Q.; Tang, Q. W.; Zhao, Z. Y.; Hou, M. J.; Chen, Y. R.; He, B. L.; Yu, L. M. J. Power Sources 2015, 278, 183.  doi: 10.1016/j.jpowsour.2014.12.069

    68. [68]

      Liu, L. L.; Wang, Q.; Gao, C. J.; Chen, H.; Liu, W. S.; Tang, Y. J. Phys. Chem. C 2014, 118, 14511.  doi: 10.1021/jp502281m

    69. [69]

      Tu, Y. G.; Wu, J. H.; Lan, Z.; Lin, Y. B.; Liu, Q.; Lin, B. C.; Liu, G. Z. J. Mater. Sci.-Mater. Electron. 2014, 25, 3016.  doi: 10.1007/s10854-014-1976-1

    70. [70]

      Ke, W. J.; Fang, G. J.; Lei, H. W.; Qin, P. L.; Tao, H.; Zeng, W.; Wang, J.; Zhao, X. Z. J. Power Sources 2014, 248, 809.  doi: 10.1016/j.jpowsour.2013.10.028

    71. [71]

      De Rossi, F.; Di Gaspare, L.; Reale, A.; Di Carlo, A.; Brown, T. M. J. Mater. Chem. A 2013, 1, 12941.  doi: 10.1039/c3ta13076b

    72. [72]

      Geng, H. F.; Zhu, L. Q.; Li, W. P.; Liu, H. C.; Su, X. W.; Xi, F. X.; Chang, X. W. Electrochim. Acta 2015, 182, 1093.  doi: 10.1016/j.electacta.2015.10.033

    73. [73]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    74. [74]

      Jiang, Q.; Chu, Z. N.; Wang, P. Y.; Yang, X. L.; Liu, H.; Wang, Y.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Adv. Mater. 2017, 29, 1703852.  doi: 10.1002/adma.v29.46

    75. [75]

      Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T.; Peters, I. M.; Minichetti, M. C.; Rolston, N.; Prasanna, R.; Sofia, S.; Harwood, D.; Ma, W.; Moghadam, F.; Snaith, H. J.; Buonassisi, T.; Holman, Z. C.; Bent, S. F.; McGehee, M. D. Nat. Energy 2017, 2, 17009.  doi: 10.1038/nenergy.2017.9

    76. [76]

      Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376.  doi: 10.1126/science.aan2301

    77. [77]

      Yang, Y.; Gao, J.; Cui, J. R.; Guo, X. Y. J. Inorg. Mater. 2015, 30, 1131(in Chinese).
       

    78. [78]

      Zhu, S. J.; Yao, X.; Ren, Q. S.; Zheng, C. C.; Li, S. Z.; Tong, Y. Z.; Shi, B.; Guo, S.; Fan, L.; Ren, H. Z.; Wei, C. C.; Li, B. Z.; Ding, Y.; Huang, Q.; Li, Y. L.; Zhao, Y.; Zhang, X. D. Nano Energy 2017, 45, 280.

    79. [79]

      Fan, L.; Li, Y. L.; Yao, X.; Ding, Y.; Zhao, S. Z.; Shi, B.; Wei, C. C.; Zhang, D. K.; Li, B. Z.; Wang, G. C.; Zhao, Y.; Zhang, X. D. ACS Appl. Energy Mater. 2018, 1, 1575.  doi: 10.1021/acsaem.8b00001

    80. [80]

      Kim, G. M.; Tatsuma, T. Sci. Rep. 2017, 7, 10699.  doi: 10.1038/s41598-017-11193-1

    81. [81]

      Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M. Y.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C. J. Nanoscale 2015, 7, 1642.  doi: 10.1039/C4NR06033D

    82. [82]

      Lee, M.; Ko, Y.; Jun, Y. J. Mater. Chem. A 2015, 3, 19310.  doi: 10.1039/C5TA02779A

    83. [83]

      Yang, K.Y.; Li, F. S.; Zhang, J. H.; Veeramalai, C. P.; Guo, T. L. Nanotechnology 2016, 27, 095202.  doi: 10.1088/0957-4484/27/9/095202

    84. [84]

      Pang, S. Z.; Chen, D. Z.; Zhang, C. F.; Chang, J. J.; Lin, Z. H.; Yang, H. F.; Sun, X.; Mo, J. J.; Xi, H.; Han, G. Q.; Zhang, J. C.; Han, Y. Sol. Energy Mater. Sol. Cells 2017, 170, 278.  doi: 10.1016/j.solmat.2017.05.071

    85. [85]

      Fan, X.; Wang, J. Z.; Wang, H. B.; Liu, X.; Wang, H. ACS Appl. Mater. Interfaces 2015, 7, 16287.  doi: 10.1021/acsami.5b02830

    86. [86]

      Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y.-R.; Kim, B.-J.; Lee, K. Adv. Mater. 2014, 26, 2268.  doi: 10.1002/adma.v26.14

    87. [87]

      Xiao, Y. M.; Han, G. Y.; Wu, J. H.; Lin, J.-Y. J. Power Sources 2016, 306, 171.  doi: 10.1016/j.jpowsour.2015.12.003

    88. [88]

      Xiao, Y. M.; Han, G. Y.; Zhou, H. H.; Wu, J. H. RSC Adv. 2016, 6, 2778.  doi: 10.1039/C5RA23430A

    89. [89]

      Sun, K.; Li, P. C.; Xia, Y. J.; Chang, J. J.; Ouyang, J. Y. ACS Appl. Mater. Interfaces 2015, 7, 15314.  doi: 10.1021/acsami.5b03171

    90. [90]

      Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Nano Energy 2016, 28, 151.  doi: 10.1016/j.nanoen.2016.08.038

  • 加载中
    1. [1]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    19. [19]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    20. [20]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

Metrics
  • PDF Downloads(8)
  • Abstract views(1729)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return