Citation: Cui Huina, Qiu Feng, Peng Juan. Synthesis and Properties of an All-Conjugated Polythio-phene-Polyselenophene Diblock Copolymer[J]. Acta Chimica Sinica, ;2018, 76(9): 691-700. doi: 10.6023/A18040178 shu

Synthesis and Properties of an All-Conjugated Polythio-phene-Polyselenophene Diblock Copolymer

  • Corresponding author: Peng Juan, juanpeng@fudan.edu.cn
  • Received Date: 28 April 2018
    Available Online: 2 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21674024, 21320102005) and Ministry of Science and Technology of China (No. 2016YFA0203301)the National Natural Science Foundation of China 21320102005Ministry of Science and Technology of China 2016YFA0203301the National Natural Science Foundation of China 21674024

Figures(10)

  • All-conjugated rod-rod block copolymers (BCPs) have gained immense interest over the past few years because they combine fascinating self-assembly properties of BCPs with the optical and electronic properties of conjugated polymers. Based on it, an all-conjugated rod-rod BCPs, poly(3-hexylselenophene)-b-poly[3-(6-hydroxyl)hexylthiophene] (P3HS-b-P3HHT) with hydroxyl groups as side substitution groups was synthesized via the Grignard metathesis (GRIM) method. The introduction of side hydroxyl groups was designed to endow different polarity between P3HS and P3HHT blocks and enrich the solution structures of P3HS-b-P3HHT. During thermal annealing, the cross-linking of hydroxyl groups was also utilized to improve the thermal stability of poly(3-hexylthiophene) (P3HT)-based organic field-effect transistors (OFETs) when blended with a certain amount of P3HS-b-P3HHT. On one hand, the use of mixed solvents provided an effective way to control the self-assembly behavior of P3HS-b-P3HHT. Depending on the mixed solvent ratio (i.e., chloroform/pyridine or methanol/pyridine), the rod-rod interaction of the copolymer chains was controlled, yielding a series of nanostructures such as nanoribbons, nanofibers, and nanospheres. Detailed morphologies and the corresponding photophysical behavior of different nanostructures were characterized by transmission electron microscope and UV-vis absorption spectra. The conformations of the P3HS and P3HHT chains in the solutions influenced their photophysical properties greatly. On the other hand, based on the thermal cross-linkable properties of hydroxyl groups, a certain amount of P3HS-b-P3HHT was mixed with P3HT homopolymer to fabricate P3HS-b-P3HHT/P3HT OFETs. For control samples, the charge carrier mobility of pure P3HT-based OFETs was improved with the increased annealed temperatures up to 170℃, then decreased significantly when the temperature further increased to 200℃. While overall, the charge carrier mobilities of P3HS-b-P3HHT/P3HT OFETs were lower than those of pure P3HT-based OFETs, they were improved with the increased temperature to 200℃. It was found the P3HS-b-P3HHT(10%)/P3HT OFETs exhibited the charge carrier mobility of 0.040 cm2·V-1·s-1 after annealing at 200℃ for 1 h, which was higher than P3HT OFETs (0.025 cm2·V-1·s-1) under the same experimental condition. It was due to the cross-linking of hydroxyl groups in P3HS-b-P3HHT retain the crystallization structures of P3HT, thus improved the thermal stability of OFETs. Overall, this work demonstrates a new polythiophene-polyselenophene BCP with controlled nanostructures by solvent blending and promising application in OFETs to improve their thermal stability.
  • 加载中
    1. [1]

      Horowitz, G. Adv. Mater. 1998, 10, 365.

    2. [2]

      Kim, N. K.; Jang, S. Y. G.; Caironi, P. M.; Park, W. T.; Khim, D.; Kim, J.; Kim, D. Y.; Noh, Y. Y. Chem. Mater. 2015, 27, 8345.  doi: 10.1021/acs.chemmater.5b03775

    3. [3]

      Yang, N.; Qiao, X.; Fang, R.; Tao, J.; Hao, J.; Li, H. Acta Chim. Sinica 2016, 74, 335.
       

    4. [4]

      Lu, Y.; Ding, Y.; Wang, J. Chin. J. Org. Chem. 2016, 36, 2272. 

    5. [5]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.  doi: 10.1021/cr050149z

    6. [6]

      Zhao, C.; Wang, Z.; Zhou, K.; Ge, H.; Zhang, Q.; Jin, L.; Wang, W.; Yin, S. Acta Chim. Sinica 2016, 74, 251.  doi: 10.3969/j.issn.0253-2409.2016.02.017
       

    7. [7]

      Nian, Y.; Wang, Z.; Jiang, H.; Feng, S.; Li, S.; Zhang, L.; Cao, Y.; Chen, Y. Chin. J. Chem. 2018, 36, 495.  doi: 10.1002/cjoc.v36.6

    8. [8]

      Perepichka, I. F.; Perepichka, D. F.; Meng, H.; Wudl, F. Adv. Mater. 2005, 17, 2281.

    9. [9]

      Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2008, 41, 67.  doi: 10.1021/ma071626d

    10. [10]

      Wang, H.; Tang, G.; Jin, S.; Bian, C.; Han, F.; Liang, D.; Xue, X.; Acta Chim. Sinica 2007, 65, 2454.  doi: 10.3321/j.issn:0567-7351.2007.21.018
       

    11. [11]

      Brinkmann, M.; Wittmann, J. C. Adv. Mater. 2006, 18, 860.

    12. [12]

      Scherf, U.; Gutacker, A.; Koenen, N. Acc. Chem. Res. 2008, 41, 1086.  doi: 10.1021/ar7002539

    13. [13]

      Kim, J.; Song, I. Y.; Park, T. Chem. Commun. 2011, 47, 4697.  doi: 10.1039/c1cc10700c

    14. [14]

      Park, J. Y.; Koenen, N.; Forster, M.; Ponnapati, R.; Scherf, U.; Advincular, R. Macromolecules. 2008, 41, 6169.  doi: 10.1021/ma702402g

    15. [15]

      Thomas, A.; Houston, J. E.; Van der Brande N.; Winter, J. D.; Chevrer, M.; Heenan, R. K.; Terry, A. E.; Richeter, S.; Mehdi, A.; Mele, B. V.; Dubois, P.; Lazzaroni, R.; Gerbaux, P.; Evans, R. C.; Clement, S. Polym. Chem. 2014, 5, 3352.  doi: 10.1039/C4PY00037D

    16. [16]

      Li, Z.; Huo, Y.; Yang, X.; Ji, S. Chin. J. Org. Chem. 2016, 36, 2317.
       

    17. [17]

      Liu, Y.; Yuan, J.; Zou, Y.; Li, Y. Acta Chim. Sinica 2017, 75, 257.  doi: 10.3969/j.issn.0253-2409.2017.03.001
       

    18. [18]

      Shao, R.; Yang, X.; Yin, S.; Wang, W. Acta Chim. Sinica 2016, 74, 676.
       

    19. [19]

      Li, H.; Fang, M.; Xu, T.; Hou, Y.; Tagn, R.; Chen, J.; Liu, L.; Han, H.; Peng, T.; Li, Q.; Li, Z. Org. Chem. Front. 2016, 2, 233.

    20. [20]

      Gutacker, A.; Adamczyk, S.; Helfer, A.; Garner, L. E.; Evans, R. C.; Fonseca, S. M.; Knaapila, M.; Bazan, G. C.; Burrows, H. D.; Scherf. U. J. Mater. Chem. 2010, 20, 1423.  doi: 10.1039/B918583F

    21. [21]

      Lai, Y. C.; Ohshimizu, K.; Takahashi, A.; Hsu, J. C.; Higashihara, T.; Ueda, M.; Chen, W. C. J. Polym. Sci., Part A:Polym. Chem. 2011, 49, 2577.  doi: 10.1002/pola.24689

    22. [22]

      Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.; Geohegan, D. B. ACS Nano 2011, 5, 3559.  doi: 10.1021/nn2007964

    23. [23]

      Gilroy, J. B.; Lunn, D. J.; Patra, S. K.; Whittell, G. R.; Winnik, M. A.; Manners, I. Macromolecules 2012, 45, 5806.  doi: 10.1021/ma3008114

    24. [24]

      Moon, H. C.; Anthonysamy, A.; Kim, J. K. Macromolecules 2011, 44, 1894.  doi: 10.1021/ma200171m

    25. [25]

      Verduzco, R.; Botiz, I.; Pickel, D. L.; Kilbey, M. S. Hong, K.; Dimasi, E.; Darling, S. B. Macromolecules 2011, 44, 530.  doi: 10.1021/ma102728z

    26. [26]

      Ge, J.; He, M.; Xie, N.; Ye, Z.; Qiu, F. Macromolecules 2015, 48, 279.  doi: 10.1021/ma502321d

    27. [27]

      Wu, P. T.; Ren, G.; Li, C.; Mezzenga, R.; Jenekhe, S. A. Macromolecules 2009, 42, 2317.  doi: 10.1021/ma802874v

    28. [28]

      Yang, H.; Zhang, R.; Wang, L.; Zhang, J.; Yu, X.; Geng, Y.; Han, Y. Polymer 2016, 97, 238.  doi: 10.1016/j.polymer.2016.05.037

    29. [29]

      Song, I. Y.; Kim, J.; Im, M. J.; Moon, B. J.; Park, T. Macromolecules 2012, 45, 5058.  doi: 10.1021/ma300771g

    30. [30]

      Scherf, U.; Adamczyk, S.; Gutacker, A.; Koenen, N. Macromol. Rapid Commun. 2009, 30, 1059.  doi: 10.1002/marc.v30:13

    31. [31]

      Ho, V.; Boudouris, B. W.; Segalman, R. A. Macromolecules 2010, 43, 7895.  doi: 10.1021/ma101697m

    32. [32]

      He, M.; Han, W.; Ge, J.; Yang, X.; Qiu, F.; Lin, Z. Energy Environ. Sci. 2011, 4, 2894.  doi: 10.1039/c1ee01509e

    33. [33]

      Yang, X.; Ge, J.; He, M.; Ye, Z.; Peng, J.; Qiu, F. Macromolecules 2016, 49, 287.  doi: 10.1021/acs.macromol.5b02001

    34. [34]

      Zhu, M.; Kim, H.; Jang, Y. J.; Park, S.; Ryu, D. Y.; Kim, K.; Tang, P.; Qiu, F.; Kim, D. H.; Peng, J. J. Mater. Chem. A 2016, 4, 18432.  doi: 10.1039/C6TA08181A

    35. [35]

      Xia, H.; Ye, Z.; Liu, X.; Peng, J.; Qiu, F. RSC Adv. 2014, 4, 19646.  doi: 10.1039/c4ra01127a

    36. [36]

      Wang, Y.; Cui, H.; Zhu, M.; Peng, J.; Lin, Z. Macromolecules 2017, 50, 9674.  doi: 10.1021/acs.macromol.7b02126

    37. [37]

      Hollinger, J.; Jahnke, A. A.; Coombs, N.; Seferos, D. S. J. Am. Chem. Soc. 2010, 132, 8546.  doi: 10.1021/ja103191u

    38. [38]

      Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422.  doi: 10.1039/B908983G

    39. [39]

      Ge, J.; He, M.; Yang, X.; Qiu, F. Macromolecules 2010, 43, 6422.  doi: 10.1021/ma1010167

    40. [40]

      Yang, H.; Xia, H.; Wang, G.; Peng, J. J. Polym. Sci., Part A:Polym. Chem. 2012, 50, 5060.  doi: 10.1002/pola.26353

    41. [41]

      He, L.; Pan, S.; Peng, J. J. Polym. Sci., Part B:Polym. Phys. 2016, 54, 544.

    42. [42]

      Li, L.; Hollinger, J.; Jahnke, A.; Petrov, S.; Seferos, S. Chem. Sci. 2011, 2, 2306.  doi: 10.1039/c1sc00415h

    43. [43]

      Liu, J.; Arif, M.; Zou, J.; Khondaker, S.; Zhai, L. Macromolecules 2009, 42, 9390.  doi: 10.1021/ma901955c

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    4. [4]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

Metrics
  • PDF Downloads(11)
  • Abstract views(1688)
  • HTML views(305)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return