Citation: Cui Huina, Qiu Feng, Peng Juan. Synthesis and Properties of an All-Conjugated Polythio-phene-Polyselenophene Diblock Copolymer[J]. Acta Chimica Sinica, ;2018, 76(9): 691-700. doi: 10.6023/A18040178 shu

Synthesis and Properties of an All-Conjugated Polythio-phene-Polyselenophene Diblock Copolymer

  • Corresponding author: Peng Juan, juanpeng@fudan.edu.cn
  • Received Date: 28 April 2018
    Available Online: 2 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21674024, 21320102005) and Ministry of Science and Technology of China (No. 2016YFA0203301)the National Natural Science Foundation of China 21320102005Ministry of Science and Technology of China 2016YFA0203301the National Natural Science Foundation of China 21674024

Figures(10)

  • All-conjugated rod-rod block copolymers (BCPs) have gained immense interest over the past few years because they combine fascinating self-assembly properties of BCPs with the optical and electronic properties of conjugated polymers. Based on it, an all-conjugated rod-rod BCPs, poly(3-hexylselenophene)-b-poly[3-(6-hydroxyl)hexylthiophene] (P3HS-b-P3HHT) with hydroxyl groups as side substitution groups was synthesized via the Grignard metathesis (GRIM) method. The introduction of side hydroxyl groups was designed to endow different polarity between P3HS and P3HHT blocks and enrich the solution structures of P3HS-b-P3HHT. During thermal annealing, the cross-linking of hydroxyl groups was also utilized to improve the thermal stability of poly(3-hexylthiophene) (P3HT)-based organic field-effect transistors (OFETs) when blended with a certain amount of P3HS-b-P3HHT. On one hand, the use of mixed solvents provided an effective way to control the self-assembly behavior of P3HS-b-P3HHT. Depending on the mixed solvent ratio (i.e., chloroform/pyridine or methanol/pyridine), the rod-rod interaction of the copolymer chains was controlled, yielding a series of nanostructures such as nanoribbons, nanofibers, and nanospheres. Detailed morphologies and the corresponding photophysical behavior of different nanostructures were characterized by transmission electron microscope and UV-vis absorption spectra. The conformations of the P3HS and P3HHT chains in the solutions influenced their photophysical properties greatly. On the other hand, based on the thermal cross-linkable properties of hydroxyl groups, a certain amount of P3HS-b-P3HHT was mixed with P3HT homopolymer to fabricate P3HS-b-P3HHT/P3HT OFETs. For control samples, the charge carrier mobility of pure P3HT-based OFETs was improved with the increased annealed temperatures up to 170℃, then decreased significantly when the temperature further increased to 200℃. While overall, the charge carrier mobilities of P3HS-b-P3HHT/P3HT OFETs were lower than those of pure P3HT-based OFETs, they were improved with the increased temperature to 200℃. It was found the P3HS-b-P3HHT(10%)/P3HT OFETs exhibited the charge carrier mobility of 0.040 cm2·V-1·s-1 after annealing at 200℃ for 1 h, which was higher than P3HT OFETs (0.025 cm2·V-1·s-1) under the same experimental condition. It was due to the cross-linking of hydroxyl groups in P3HS-b-P3HHT retain the crystallization structures of P3HT, thus improved the thermal stability of OFETs. Overall, this work demonstrates a new polythiophene-polyselenophene BCP with controlled nanostructures by solvent blending and promising application in OFETs to improve their thermal stability.
  • 加载中
    1. [1]

      Horowitz, G. Adv. Mater. 1998, 10, 365.

    2. [2]

      Kim, N. K.; Jang, S. Y. G.; Caironi, P. M.; Park, W. T.; Khim, D.; Kim, J.; Kim, D. Y.; Noh, Y. Y. Chem. Mater. 2015, 27, 8345.  doi: 10.1021/acs.chemmater.5b03775

    3. [3]

      Yang, N.; Qiao, X.; Fang, R.; Tao, J.; Hao, J.; Li, H. Acta Chim. Sinica 2016, 74, 335.
       

    4. [4]

      Lu, Y.; Ding, Y.; Wang, J. Chin. J. Org. Chem. 2016, 36, 2272. 

    5. [5]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.  doi: 10.1021/cr050149z

    6. [6]

      Zhao, C.; Wang, Z.; Zhou, K.; Ge, H.; Zhang, Q.; Jin, L.; Wang, W.; Yin, S. Acta Chim. Sinica 2016, 74, 251.  doi: 10.3969/j.issn.0253-2409.2016.02.017
       

    7. [7]

      Nian, Y.; Wang, Z.; Jiang, H.; Feng, S.; Li, S.; Zhang, L.; Cao, Y.; Chen, Y. Chin. J. Chem. 2018, 36, 495.  doi: 10.1002/cjoc.v36.6

    8. [8]

      Perepichka, I. F.; Perepichka, D. F.; Meng, H.; Wudl, F. Adv. Mater. 2005, 17, 2281.

    9. [9]

      Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2008, 41, 67.  doi: 10.1021/ma071626d

    10. [10]

      Wang, H.; Tang, G.; Jin, S.; Bian, C.; Han, F.; Liang, D.; Xue, X.; Acta Chim. Sinica 2007, 65, 2454.  doi: 10.3321/j.issn:0567-7351.2007.21.018
       

    11. [11]

      Brinkmann, M.; Wittmann, J. C. Adv. Mater. 2006, 18, 860.

    12. [12]

      Scherf, U.; Gutacker, A.; Koenen, N. Acc. Chem. Res. 2008, 41, 1086.  doi: 10.1021/ar7002539

    13. [13]

      Kim, J.; Song, I. Y.; Park, T. Chem. Commun. 2011, 47, 4697.  doi: 10.1039/c1cc10700c

    14. [14]

      Park, J. Y.; Koenen, N.; Forster, M.; Ponnapati, R.; Scherf, U.; Advincular, R. Macromolecules. 2008, 41, 6169.  doi: 10.1021/ma702402g

    15. [15]

      Thomas, A.; Houston, J. E.; Van der Brande N.; Winter, J. D.; Chevrer, M.; Heenan, R. K.; Terry, A. E.; Richeter, S.; Mehdi, A.; Mele, B. V.; Dubois, P.; Lazzaroni, R.; Gerbaux, P.; Evans, R. C.; Clement, S. Polym. Chem. 2014, 5, 3352.  doi: 10.1039/C4PY00037D

    16. [16]

      Li, Z.; Huo, Y.; Yang, X.; Ji, S. Chin. J. Org. Chem. 2016, 36, 2317.
       

    17. [17]

      Liu, Y.; Yuan, J.; Zou, Y.; Li, Y. Acta Chim. Sinica 2017, 75, 257.  doi: 10.3969/j.issn.0253-2409.2017.03.001
       

    18. [18]

      Shao, R.; Yang, X.; Yin, S.; Wang, W. Acta Chim. Sinica 2016, 74, 676.
       

    19. [19]

      Li, H.; Fang, M.; Xu, T.; Hou, Y.; Tagn, R.; Chen, J.; Liu, L.; Han, H.; Peng, T.; Li, Q.; Li, Z. Org. Chem. Front. 2016, 2, 233.

    20. [20]

      Gutacker, A.; Adamczyk, S.; Helfer, A.; Garner, L. E.; Evans, R. C.; Fonseca, S. M.; Knaapila, M.; Bazan, G. C.; Burrows, H. D.; Scherf. U. J. Mater. Chem. 2010, 20, 1423.  doi: 10.1039/B918583F

    21. [21]

      Lai, Y. C.; Ohshimizu, K.; Takahashi, A.; Hsu, J. C.; Higashihara, T.; Ueda, M.; Chen, W. C. J. Polym. Sci., Part A:Polym. Chem. 2011, 49, 2577.  doi: 10.1002/pola.24689

    22. [22]

      Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.; Geohegan, D. B. ACS Nano 2011, 5, 3559.  doi: 10.1021/nn2007964

    23. [23]

      Gilroy, J. B.; Lunn, D. J.; Patra, S. K.; Whittell, G. R.; Winnik, M. A.; Manners, I. Macromolecules 2012, 45, 5806.  doi: 10.1021/ma3008114

    24. [24]

      Moon, H. C.; Anthonysamy, A.; Kim, J. K. Macromolecules 2011, 44, 1894.  doi: 10.1021/ma200171m

    25. [25]

      Verduzco, R.; Botiz, I.; Pickel, D. L.; Kilbey, M. S. Hong, K.; Dimasi, E.; Darling, S. B. Macromolecules 2011, 44, 530.  doi: 10.1021/ma102728z

    26. [26]

      Ge, J.; He, M.; Xie, N.; Ye, Z.; Qiu, F. Macromolecules 2015, 48, 279.  doi: 10.1021/ma502321d

    27. [27]

      Wu, P. T.; Ren, G.; Li, C.; Mezzenga, R.; Jenekhe, S. A. Macromolecules 2009, 42, 2317.  doi: 10.1021/ma802874v

    28. [28]

      Yang, H.; Zhang, R.; Wang, L.; Zhang, J.; Yu, X.; Geng, Y.; Han, Y. Polymer 2016, 97, 238.  doi: 10.1016/j.polymer.2016.05.037

    29. [29]

      Song, I. Y.; Kim, J.; Im, M. J.; Moon, B. J.; Park, T. Macromolecules 2012, 45, 5058.  doi: 10.1021/ma300771g

    30. [30]

      Scherf, U.; Adamczyk, S.; Gutacker, A.; Koenen, N. Macromol. Rapid Commun. 2009, 30, 1059.  doi: 10.1002/marc.v30:13

    31. [31]

      Ho, V.; Boudouris, B. W.; Segalman, R. A. Macromolecules 2010, 43, 7895.  doi: 10.1021/ma101697m

    32. [32]

      He, M.; Han, W.; Ge, J.; Yang, X.; Qiu, F.; Lin, Z. Energy Environ. Sci. 2011, 4, 2894.  doi: 10.1039/c1ee01509e

    33. [33]

      Yang, X.; Ge, J.; He, M.; Ye, Z.; Peng, J.; Qiu, F. Macromolecules 2016, 49, 287.  doi: 10.1021/acs.macromol.5b02001

    34. [34]

      Zhu, M.; Kim, H.; Jang, Y. J.; Park, S.; Ryu, D. Y.; Kim, K.; Tang, P.; Qiu, F.; Kim, D. H.; Peng, J. J. Mater. Chem. A 2016, 4, 18432.  doi: 10.1039/C6TA08181A

    35. [35]

      Xia, H.; Ye, Z.; Liu, X.; Peng, J.; Qiu, F. RSC Adv. 2014, 4, 19646.  doi: 10.1039/c4ra01127a

    36. [36]

      Wang, Y.; Cui, H.; Zhu, M.; Peng, J.; Lin, Z. Macromolecules 2017, 50, 9674.  doi: 10.1021/acs.macromol.7b02126

    37. [37]

      Hollinger, J.; Jahnke, A. A.; Coombs, N.; Seferos, D. S. J. Am. Chem. Soc. 2010, 132, 8546.  doi: 10.1021/ja103191u

    38. [38]

      Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422.  doi: 10.1039/B908983G

    39. [39]

      Ge, J.; He, M.; Yang, X.; Qiu, F. Macromolecules 2010, 43, 6422.  doi: 10.1021/ma1010167

    40. [40]

      Yang, H.; Xia, H.; Wang, G.; Peng, J. J. Polym. Sci., Part A:Polym. Chem. 2012, 50, 5060.  doi: 10.1002/pola.26353

    41. [41]

      He, L.; Pan, S.; Peng, J. J. Polym. Sci., Part B:Polym. Phys. 2016, 54, 544.

    42. [42]

      Li, L.; Hollinger, J.; Jahnke, A.; Petrov, S.; Seferos, S. Chem. Sci. 2011, 2, 2306.  doi: 10.1039/c1sc00415h

    43. [43]

      Liu, J.; Arif, M.; Zou, J.; Khondaker, S.; Zhai, L. Macromolecules 2009, 42, 9390.  doi: 10.1021/ma901955c

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(9)
  • Abstract views(1275)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return