Citation: Zhang Dandan, Yuan Zhenzhou, Zhang Guoqing, Tian Nan, Liu Danmin, Zhang Yongzhe. Preparation and Characterization of Black Phosphorus[J]. Acta Chimica Sinica, ;2018, 76(7): 537-542. doi: 10.6023/A18040175 shu

Preparation and Characterization of Black Phosphorus

  • Corresponding author: Liu Danmin, dmliu@bjut.edu.cn
  • Received Date: 28 April 2018
    Available Online: 6 July 2018

    Fund Project: the Science and Technology Commission of Beijing Municipality Z151100003315018the National Natural Science Foundation of China 61575010Project supported by the National Natural Science Foundation of China (Nos. 51671006 and 61575010), the Natural Science Foundation of Beijing (No. 4162016), and the Science and Technology Commission of Beijing Municipality (No. Z151100003315018)the Natural Science Foundation of Beijing 4162016the National Natural Science Foundation of China 51671006

Figures(7)

  • Black phosphorus has attracted broad interest because of their low-dimensional effect, and has become a new kind of two-dimensional (2D) materials. Phosphorus has several allotropes. Black phosphorus is the most thermodynamic stable in them. As a kind of two-dimensional materials, black phosphorus has high carrier mobility and on/off ratio. The band gap of black phosphorus can be adjusted by its number of layers from 0.3 to 2 eV. It is of great significance to the development of new infrared and near-infrared optoelectronic devices. Currently, the main methods for preparing black phosphorus are chemical vapor transfer and high energy ball milling methods. In this paper, black phosphorus was successfully synthesized from red phosphorus via chemical vapor transfer and high energy ball milling methods. Then black phosphorus was put in ethanol for 10 min to liquid exfoliation, in which the ultrasonic power was 400 W. The microstructures and stability of black phosphorus synthesized by two methods were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimeter (DSC). In situ electrical measurements of black phosphorus prepared by chemical vapor transfer were performed using a commercial scanning tunnelling microscope-transmission electron microscope probing system (STM-TEM, Nanofactory Instruments) inserted into a JEOL-2010F TEM. The microstructural characterization results show that there is some red phosphorus and amorphous phases in black phosphorus prepared by high energy ball milling method. On the contrary, the black phosphorus prepared by chemical vapor transfer method has no amorphous phases. The XRD results show that black phosphorus synthesized by chemical vapor transfer method did not change significantly after keeping in the air for 16 days. The DSC results show that the volatile points of the black phosphorus prepared by high energy ball milling and chemical vapor transfer methods are respectively 394.5 and 432.2℃, which means the latter has better thermal stability. The TEM results show that a layer or two layers of phosphorene via liquid exfoliation had been obtained, which is large in size and clean in surface. After being irradiated in TEM with a dose of 0.8 eV/(Å2·s) at 200 kV for 60 min, few new diffraction spots appeared in black phosphorus synthesized by chemical vapor transfer method, which indicates it is relatively stable under electron radiation in vacuum. In a word, the black phosphorus prepared by chemical vapor transfer method has large size, good crystallinity, high purity, and high stability. It can be used to prepare two-dimensional black phosphorus by mechanical exfoliation and liquid exfoliation, and then be applied to advanced microelectronic devices.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    2. [2]

      Susarla, S.; Manimunda, P.; Morais Jaques, Y.; Hachtel, J.; Idrobo, J. C.; Syed Amanulla, S. A.; Galvao, D. S.; Tiwary, C. S.; Ajayan, P. M. ACS Nano 2018, DOI:10. 1021/acsnano. 8b01786.  doi: 10.1021/acsnano.8b01786

    3. [3]

      Lin, X.; Wang, J. Acta Chim. Sinica 2017, 75, 979. (in Chinese).
       

    4. [4]

      Yang, L.; Fu, Q.; Wang, W.; Huang, J.; Huang, J.; Zhang, J.; Xiang, B. Nanoscale 2015, 7, 10490.  doi: 10.1039/C5NR02652K

    5. [5]

      Tan, C.; Yu, P.; Hu, Y.; Chen, J.; Huang, Y.; Cai, Y.; Luo, Z.; Li, B.; Lu, Q.; Wang, L.; Liu, Z.; Zhang, H. J. Am. Chem. Soc. 2015, 137, 10430.  doi: 10.1021/jacs.5b06982

    6. [6]

      Liang, Y.; Feng, R.; Yang, S.; Ma, H.; Liang, J.; Chen, J. Adv. Mater. 2011, 23, 640.  doi: 10.1002/adma.201003560

    7. [7]

      Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L.; Yu, J.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2011, 11, 1423.  doi: 10.1021/nl200225j

    8. [8]

      Wang, X.; Zhi, L.; Müllen, K. Nano Lett. 2008, 8, 323.  doi: 10.1021/nl072838r

    9. [9]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  doi: 10.1021/nl0731872

    10. [10]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.  doi: 10.1126/science.1156965

    11. [11]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.  doi: 10.1038/nature04233

    12. [12]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.  doi: 10.1126/science.1157996

    13. [13]

      Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.  doi: 10.1038/nature04235

    14. [14]

      Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Xiao, K. Nano Lett. 2013, 13, 1649.  doi: 10.1021/nl400107k

    15. [15]

      He, X.; Liu, F.; Zeng, Q.; Liu, Z. Acta Chim. Sinica 2015, 73, 924(in Chinese).
       

    16. [16]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147.  doi: 10.1038/nnano.2010.279

    17. [17]

      Liu, S.; Huo, N.; Gan, S.; Li, Y.; Wei, Z.; Huang, B.; Liu, J.; Li, J.; Chen, H. J. Mater. Chem. C 2015, 3, 10974.  doi: 10.1039/C5TC01809A

    18. [18]

      Xia, F.; Wang, H.; Jia, Y. Nat. Commun. 2014, 5, 4458.  doi: 10.1038/ncomms5458

    19. [19]

      Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nat. Nanotechnol. 2014, 9, 372.  doi: 10.1038/nnano.2014.35

    20. [20]

      Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. ACS Nano 2014, 8, 4033.  doi: 10.1021/nn501226z

    21. [21]

      Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Ozyilmaz, B. Appl. Phys. Lett. 2014, 104, 10451.
       

    22. [22]

      Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488(in Chinese).
       

    23. [23]

      Li, J.; Chen, C.; Liu, S.; Lu, J.; Goh, W. P.; Fang, H.; Qiu, Z.; Tian, B.; Chen, Z.; Yao, C.; Liu, W.; Yan, H.; Yu, Y.; Wang, D.; Wang, Y.; Lin, M.; Su, C.; Lu, J. Chem. Mater. 2018, DOI:10. 1021/acs. chemmater. 8b00521.  doi: 10.1021/acs.chemmater.8b00521

    24. [24]

      Zhang, Z.; Xin, X.; Yan, Q.; Li, Q.; Yang, Y.; Ren, T.-L. Sci. China Mater. 2016, 59, 122.  doi: 10.1007/s40843-016-0122-1

    25. [25]

      Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5, 4475.  doi: 10.1038/ncomms5475

    26. [26]

      Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Zant, H. S. J.; Castellanos-Gomez, A. Nano Lett. 2014, 14, 3347.  doi: 10.1021/nl5008085

    27. [27]

      Bridgeman, P. W. J. Am. Chem. Soc. 1914, 36, 1344.  doi: 10.1021/ja02184a002

    28. [28]

      Krebs, H.; Weitz, H.; Worms, K. H. Anorg. Allg. Chem. 1955, 280, 119.  doi: 10.1002/(ISSN)1521-3749

    29. [29]

      Brown, A.; Rundqvist, S. Acta Crystallogr. 1965, 19, 684.  doi: 10.1107/S0365110X65004140

    30. [30]

      Mamoru, B.; Fukunori, I.; Yuji, T.; Akira, M. Jpn. J. Appl. Phys. 1989, 28, 1019.  doi: 10.1143/JJAP.28.1019

    31. [31]

      Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Physica B+C 1981, 105, 99.  doi: 10.1016/0378-4363(81)90223-0

    32. [32]

      Park, C. M.; Sohn, H. J. Adv. Mater. 2007, 19, 2465.  doi: 10.1002/(ISSN)1521-4095

    33. [33]

      Nilges, T.; Kersting, M.; Pfeifer, T. J. Solid State Chem. 2008, 181, 17071.
       

    34. [34]

      Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T. J. Cryst. Growth 2014, 405, 6.  doi: 10.1016/j.jcrysgro.2014.07.029

    35. [35]

      Lange, S.; Schmidt, P.; Nilges, T. Inorg. Chem. 2007, 46, 4028.  doi: 10.1021/ic062192q

    36. [36]

      Zhao, M.; Niu, X.; Guan, L.; Qian, H.; Wang, W.; Sha, J.; Wang, Y. CrystEngComm 2016, 18, 7737.  doi: 10.1039/C6CE01608A

    37. [37]

      Zhang, Z.; Xing, D.-H.; Li, J.; Yan, Q. CrystEngComm 2017, 19, 905.  doi: 10.1039/C6CE02550A

    38. [38]

      Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; Zhang, S.; Wang, K.; Moynihan, G.; Pokle, A.; Ramasse, Q. M.; McEvoy, N.; Blau, W. J.; Wang, J.; Abellan, G.; Hauke, F.; Hirsch, A.; Sanvito, S.; O'Regan, D. D.; Duesberg, G. S.; Nicolosi, V.; Coleman, J. N. Nat. Commun. 2015, 6, 8563.  doi: 10.1038/ncomms9563

    39. [39]

      Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. Adv. Mater. 2015, 27, 1887.  doi: 10.1002/adma.v27.11

    40. [40]

      Guo, Z.; Zhang, H.; Lu, S.; Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; Chu, P. K. Adv. Funct. Mater. 2015, 25, 6996.  doi: 10.1002/adfm.201502902

    41. [41]

      Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H. M.; Dai, J.; Lau, S. P. Adv. Mater. 2015, 27, 3748.  doi: 10.1002/adma.v27.25

    42. [42]

      Smith, J. B.; Hagaman, D.; Ji, H. F. J. Nanotechnol. 2016, 27, 215602.  doi: 10.1088/0957-4484/27/21/215602

    43. [43]

      Shao, R.; Zheng, K.; Zhang, Y.; Li, Y.; Zhang, Z.; Han, X. Appl. Phys. Lett. 2012, 101, 1409.
       

    44. [44]

      Tian, T.; Liu, D.; Zhang, B.; Zhang, D.; Shao, R.; Zheng, K.; Yan, H.; Zhang, Y. Mater. Lett. 2016, 183, 432.  doi: 10.1016/j.matlet.2016.07.091

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(145)
  • Abstract views(5780)
  • HTML views(2344)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return