Citation: Jiao Cenlei, Wang Wei, Liu Jiao, Yuan Yaxian, Xu Minmin, Yao Jianlin. Surface Enhanced Raman Spectroscopy Coupled with High Performance Liquid Chromatography for Real-time Monitoring of Suzuki Coupling Reaction[J]. Acta Chimica Sinica, ;2018, 76(7): 526-530. doi: 10.6023/A18040163 shu

Surface Enhanced Raman Spectroscopy Coupled with High Performance Liquid Chromatography for Real-time Monitoring of Suzuki Coupling Reaction

  • Corresponding author: Yuan Yaxian, yuanyaxian@suda.edu.cn Yao Jianlin, jlyao@suda.edu.cn
  • Received Date: 20 April 2018
    Available Online: 8 July 2018

    Fund Project: the National Natural Science Foundation of China 21773166Project supported by the National Natural Science Foundation of China (Nos. 21673152, 21773166)the National Natural Science Foundation of China 21673152

Figures(5)

  • The surface enhanced Raman spectroscopy (SERS) has been employed in the structural characterization successfully due to its ultra-high sensitivity. However, it is still remained the significant difficulties in the precise interpretation of spectroscopy. Thus, it was not developed as the promising tool for monitoring the organic reaction directly. Herein, by using the two dimensional Au nanoparticles array film as substrate, the SERS was hyphenated with high performance liquid chromatography (HPLC). The individual advantages of high sensitivity of SERS and high efficiency in separation of HPLC were combined together, and it was extended successfully to real-time monitor of a Suzuki coupling reaction between 3-bromopyridine and phenylboronic acid. Firstly, the retention time and SERS spectra of standard solution of 3-bromopyridine and phenylboronic acid were performed respectively. It was beneficial for distinguishing the reactants of the current Suzuki reaction. After the reaction was proceeded for about 5 min, the mixture was sampled for the HPLC-SERS detection. It demonstrated that the chromatogram peaks located at 2.1 min and 2.8 min were contributed to phenylboronic acid and 3-bromopyridine, while 3.6 min and 15.3 min were originated from the reaction products. The solution collected at different retention times were then flowed through the catheter and dropped to the surface of Au nanoparticles arrays sequentially. The SERS spectra features were well agreement with that of 3-bromopyridine at 2.8 min, while the SERS spectra was absent for phenylboronic acid at 2.1 min due to its weak adsorption on Au surface. For the products, the typical vibrational modes of 3-phenylpyridine and diphenyl were observed in the SERS spectra, suggesting the composition of the product and byproduct. Meanwhile, the final product was confirmed by NMR spectroscopy, proving a structure of 3-phenylpyridine. Finally, the SERS results were well associated with the chromatographic peaks in a certain duration. It indicated that the HPLC-SERS technique would be a promising tool as a complementary approach to traditional techniques (such as LC-MS) for on line monitoring the organic reaction processes.
  • 加载中
    1. [1]

      Booth, S. L.; Davidson, K. W.; Sadowski, J. A. J. Agric. Food. Chem. 1994, 42, 295.  doi: 10.1021/jf00038a013

    2. [2]

      Liu, X. S.; Wu, Z. Z.; Yang, K.; Ding, H. Y.; Wu, Y. J. J. Pharmaceut. Biomed. 2013, 76, 70.  doi: 10.1016/j.jpba.2012.12.013

    3. [3]

      Wagner, K.; Miliotis, T.; Marko-Varga, G.; Bischoff, R.; Unger, K. K. Anal. Chem. 2002, 74, 809.  doi: 10.1021/ac010627f

    4. [4]

      Tang, A. N.; Jiang, D. Q.; Jiang, Y.; Wang, S. W.; Yan, X. P. J. Chromatogr. A 2004, 1036, 183.  doi: 10.1016/j.chroma.2004.02.065

    5. [5]

      Tomas-Barberan, F. A.; Gil, M. I.; Cremin, P.; Waterhouse, A. L.; Hess-Pierce, B.; Kader, A. A. J. Agric. Food. Chem. 2001, 49, 4748.  doi: 10.1021/jf0104681

    6. [6]

      Cowcher, D. P.; Jarvis, R.; Goodacre, R. Anal. Chem. 2014, 86, 9977.  doi: 10.1021/ac5029159

    7. [7]

      Jemal, M. Biomed. Chromatogr. 2000, 14, 422.  doi: 10.1002/(ISSN)1099-0801

    8. [8]

      Su, D.; Chan, C. T. Y.; Gu, C.; Lim, K. S.; Chionh, Y. H.; McBee, M. E.; Russell, B. S.; Babu, I. R.; Begley, T. J.; Dedon, P. C. Nat. Protoc. 2014, 9, 828.  doi: 10.1038/nprot.2014.047

    9. [9]

      Ebdon, L.; Hill, S.; Ward, R. W. Analyst 1986, 111, 1113.  doi: 10.1039/an9861101113

    10. [10]

      Zhao, H.; Hasi, W.; Bao, L.; Han, S.; Sha, X. Y.; Sun, J.; Lou, X. T.; Lin, D. Y.; Lv, Z. W. Chin. J. Chem. 2017, 35, 1522.  doi: 10.1002/cjoc.v35.10

    11. [11]

      Gao, Z. G.; Zheng, T. T.; Deng, J.; Li, X. R.; Qu, Y. Y.; Lu, Y.; Liu, T. J.; Luo, Y.; Zhao, W. J.; Lin, B. C. Acta Chim. Sinica 2017, 75, 355.
       

    12. [12]

      Su, Y.; Peng, T.; Xing, F.; Li, D.; Fan, C. Acta Chim. Sinica 2017, 75, 1036.
       

    13. [13]

      Leng, C. B.; Wang, C.; Xiu, H. X.; Qu, X. M.; Chen, L. Z.; Tang, Q.; Li, L. Chin. J. Chem. 2016, 34, 273.  doi: 10.1002/cjoc.v34.3

    14. [14]

      Fan, W.; Yue-E, M.; Ling, X.; Liu, T. Chin. J. Chem. 2016, 34, 73.  doi: 10.1002/cjoc.201500585

    15. [15]

      Cabalin, L. M.; Ruperez, A.; Laserna, J. J. Talanta 1993, 40, 1741.  doi: 10.1016/0039-9140(93)80092-6

    16. [16]

      Sagmuller, B.; Schwarze, B.; Brehm, G.; Trachta, G.; Schneider, S. J. Mol. Struct. 2003, 661, 279.
       

    17. [17]

      Sheng, R.; Ni, F.; Cotton, T. M. Anal. Chem. 1991, 63, 437.  doi: 10.1021/ac00005a010

    18. [18]

      Carrillo-Carrion, C.; Simonet, B. M.; Valcarcel, M.; Lendl, B. J. Chromatogr. A 2012, 1225, 55.  doi: 10.1016/j.chroma.2011.12.002

    19. [19]

      Zhang, Z. M.; Liu, J. F.; Liu, R.; Sun, J. F.; Wei, G. H. Anal. Chem. 2014, 86, 7286.  doi: 10.1021/ac5017387

    20. [20]

      Wang, W.; Xu, M. M.; Guo, Q. H.; Yuan, Y. X.; Gu, R. A.; Yao, J. L. RSC Adv. 2015, 5, 47640.  doi: 10.1039/C5RA05562H

    21. [21]

      Zhang, C. J.; Zhang, J.; Lin, J. R.; Jin, Q.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2017, 75, 860.
       

    22. [22]

      Miyaura, N.; Suzuki, A. J. Chem. Soc. Chem. Commun. 1979, 866.

    23. [23]

      Miyaura, N.; Kinji, Y.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.  doi: 10.1016/S0040-4039(01)95429-2

    24. [24]

      Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. Eur. J. 2016, 22, 1.  doi: 10.1002/chem.201504553

    25. [25]

      Jacquemin, M.; Hauwaert, D.; Debecker, D. P.; Gaigneaux, E. M. J. Mol. Catal. 2016, 416, 47.  doi: 10.1016/j.molcata.2016.02.022

    26. [26]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoore-Baltork, I.; Loghmani-Khouzani, H. J. Organomet. Chem. 2016, 809, 31.  doi: 10.1016/j.jorganchem.2016.02.019

    27. [27]

      Guo, Q. H.; Xu, M. M.; Yuan, Y. X.; Gu, R. A.; Yao, J. L. Langmuir 2016, 32, 4530.  doi: 10.1021/acs.langmuir.5b04393

    28. [28]

      Liu, C.; Han, N.; Song, X. X.; Qiu, J. S. Eur. J. Org. Chem. 2010, 5548.
       

    29. [29]

      Wei, J. F.; Jiao, J.; Feng, J. J.; Lv, J.; Zhang, X. R.; Shi, X. Y.; Chen, Z. G. J. Org. Chem. 2009, 74, 6283.  doi: 10.1021/jo900481y

    30. [30]

      Frens, G. Nat. Phys. Sci. 1973, 241, 20.  doi: 10.1038/physci241020a0

    31. [31]

      Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2008, 39, 1679.  doi: 10.1002/jrs.v39:11

    32. [32]

      Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. Eur. J. 2016, 22, 5692.  doi: 10.1002/chem.201600167

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    9. [9]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    10. [10]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

Metrics
  • PDF Downloads(9)
  • Abstract views(1600)
  • HTML views(434)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return