Citation: Jiao Cenlei, Wang Wei, Liu Jiao, Yuan Yaxian, Xu Minmin, Yao Jianlin. Surface Enhanced Raman Spectroscopy Coupled with High Performance Liquid Chromatography for Real-time Monitoring of Suzuki Coupling Reaction[J]. Acta Chimica Sinica, ;2018, 76(7): 526-530. doi: 10.6023/A18040163 shu

Surface Enhanced Raman Spectroscopy Coupled with High Performance Liquid Chromatography for Real-time Monitoring of Suzuki Coupling Reaction

  • Corresponding author: Yuan Yaxian, yuanyaxian@suda.edu.cn Yao Jianlin, jlyao@suda.edu.cn
  • Received Date: 20 April 2018
    Available Online: 8 July 2018

    Fund Project: the National Natural Science Foundation of China 21773166Project supported by the National Natural Science Foundation of China (Nos. 21673152, 21773166)the National Natural Science Foundation of China 21673152

Figures(5)

  • The surface enhanced Raman spectroscopy (SERS) has been employed in the structural characterization successfully due to its ultra-high sensitivity. However, it is still remained the significant difficulties in the precise interpretation of spectroscopy. Thus, it was not developed as the promising tool for monitoring the organic reaction directly. Herein, by using the two dimensional Au nanoparticles array film as substrate, the SERS was hyphenated with high performance liquid chromatography (HPLC). The individual advantages of high sensitivity of SERS and high efficiency in separation of HPLC were combined together, and it was extended successfully to real-time monitor of a Suzuki coupling reaction between 3-bromopyridine and phenylboronic acid. Firstly, the retention time and SERS spectra of standard solution of 3-bromopyridine and phenylboronic acid were performed respectively. It was beneficial for distinguishing the reactants of the current Suzuki reaction. After the reaction was proceeded for about 5 min, the mixture was sampled for the HPLC-SERS detection. It demonstrated that the chromatogram peaks located at 2.1 min and 2.8 min were contributed to phenylboronic acid and 3-bromopyridine, while 3.6 min and 15.3 min were originated from the reaction products. The solution collected at different retention times were then flowed through the catheter and dropped to the surface of Au nanoparticles arrays sequentially. The SERS spectra features were well agreement with that of 3-bromopyridine at 2.8 min, while the SERS spectra was absent for phenylboronic acid at 2.1 min due to its weak adsorption on Au surface. For the products, the typical vibrational modes of 3-phenylpyridine and diphenyl were observed in the SERS spectra, suggesting the composition of the product and byproduct. Meanwhile, the final product was confirmed by NMR spectroscopy, proving a structure of 3-phenylpyridine. Finally, the SERS results were well associated with the chromatographic peaks in a certain duration. It indicated that the HPLC-SERS technique would be a promising tool as a complementary approach to traditional techniques (such as LC-MS) for on line monitoring the organic reaction processes.
  • 加载中
    1. [1]

      Booth, S. L.; Davidson, K. W.; Sadowski, J. A. J. Agric. Food. Chem. 1994, 42, 295.  doi: 10.1021/jf00038a013

    2. [2]

      Liu, X. S.; Wu, Z. Z.; Yang, K.; Ding, H. Y.; Wu, Y. J. J. Pharmaceut. Biomed. 2013, 76, 70.  doi: 10.1016/j.jpba.2012.12.013

    3. [3]

      Wagner, K.; Miliotis, T.; Marko-Varga, G.; Bischoff, R.; Unger, K. K. Anal. Chem. 2002, 74, 809.  doi: 10.1021/ac010627f

    4. [4]

      Tang, A. N.; Jiang, D. Q.; Jiang, Y.; Wang, S. W.; Yan, X. P. J. Chromatogr. A 2004, 1036, 183.  doi: 10.1016/j.chroma.2004.02.065

    5. [5]

      Tomas-Barberan, F. A.; Gil, M. I.; Cremin, P.; Waterhouse, A. L.; Hess-Pierce, B.; Kader, A. A. J. Agric. Food. Chem. 2001, 49, 4748.  doi: 10.1021/jf0104681

    6. [6]

      Cowcher, D. P.; Jarvis, R.; Goodacre, R. Anal. Chem. 2014, 86, 9977.  doi: 10.1021/ac5029159

    7. [7]

      Jemal, M. Biomed. Chromatogr. 2000, 14, 422.  doi: 10.1002/(ISSN)1099-0801

    8. [8]

      Su, D.; Chan, C. T. Y.; Gu, C.; Lim, K. S.; Chionh, Y. H.; McBee, M. E.; Russell, B. S.; Babu, I. R.; Begley, T. J.; Dedon, P. C. Nat. Protoc. 2014, 9, 828.  doi: 10.1038/nprot.2014.047

    9. [9]

      Ebdon, L.; Hill, S.; Ward, R. W. Analyst 1986, 111, 1113.  doi: 10.1039/an9861101113

    10. [10]

      Zhao, H.; Hasi, W.; Bao, L.; Han, S.; Sha, X. Y.; Sun, J.; Lou, X. T.; Lin, D. Y.; Lv, Z. W. Chin. J. Chem. 2017, 35, 1522.  doi: 10.1002/cjoc.v35.10

    11. [11]

      Gao, Z. G.; Zheng, T. T.; Deng, J.; Li, X. R.; Qu, Y. Y.; Lu, Y.; Liu, T. J.; Luo, Y.; Zhao, W. J.; Lin, B. C. Acta Chim. Sinica 2017, 75, 355.
       

    12. [12]

      Su, Y.; Peng, T.; Xing, F.; Li, D.; Fan, C. Acta Chim. Sinica 2017, 75, 1036.
       

    13. [13]

      Leng, C. B.; Wang, C.; Xiu, H. X.; Qu, X. M.; Chen, L. Z.; Tang, Q.; Li, L. Chin. J. Chem. 2016, 34, 273.  doi: 10.1002/cjoc.v34.3

    14. [14]

      Fan, W.; Yue-E, M.; Ling, X.; Liu, T. Chin. J. Chem. 2016, 34, 73.  doi: 10.1002/cjoc.201500585

    15. [15]

      Cabalin, L. M.; Ruperez, A.; Laserna, J. J. Talanta 1993, 40, 1741.  doi: 10.1016/0039-9140(93)80092-6

    16. [16]

      Sagmuller, B.; Schwarze, B.; Brehm, G.; Trachta, G.; Schneider, S. J. Mol. Struct. 2003, 661, 279.
       

    17. [17]

      Sheng, R.; Ni, F.; Cotton, T. M. Anal. Chem. 1991, 63, 437.  doi: 10.1021/ac00005a010

    18. [18]

      Carrillo-Carrion, C.; Simonet, B. M.; Valcarcel, M.; Lendl, B. J. Chromatogr. A 2012, 1225, 55.  doi: 10.1016/j.chroma.2011.12.002

    19. [19]

      Zhang, Z. M.; Liu, J. F.; Liu, R.; Sun, J. F.; Wei, G. H. Anal. Chem. 2014, 86, 7286.  doi: 10.1021/ac5017387

    20. [20]

      Wang, W.; Xu, M. M.; Guo, Q. H.; Yuan, Y. X.; Gu, R. A.; Yao, J. L. RSC Adv. 2015, 5, 47640.  doi: 10.1039/C5RA05562H

    21. [21]

      Zhang, C. J.; Zhang, J.; Lin, J. R.; Jin, Q.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2017, 75, 860.
       

    22. [22]

      Miyaura, N.; Suzuki, A. J. Chem. Soc. Chem. Commun. 1979, 866.

    23. [23]

      Miyaura, N.; Kinji, Y.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.  doi: 10.1016/S0040-4039(01)95429-2

    24. [24]

      Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. Eur. J. 2016, 22, 1.  doi: 10.1002/chem.201504553

    25. [25]

      Jacquemin, M.; Hauwaert, D.; Debecker, D. P.; Gaigneaux, E. M. J. Mol. Catal. 2016, 416, 47.  doi: 10.1016/j.molcata.2016.02.022

    26. [26]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoore-Baltork, I.; Loghmani-Khouzani, H. J. Organomet. Chem. 2016, 809, 31.  doi: 10.1016/j.jorganchem.2016.02.019

    27. [27]

      Guo, Q. H.; Xu, M. M.; Yuan, Y. X.; Gu, R. A.; Yao, J. L. Langmuir 2016, 32, 4530.  doi: 10.1021/acs.langmuir.5b04393

    28. [28]

      Liu, C.; Han, N.; Song, X. X.; Qiu, J. S. Eur. J. Org. Chem. 2010, 5548.
       

    29. [29]

      Wei, J. F.; Jiao, J.; Feng, J. J.; Lv, J.; Zhang, X. R.; Shi, X. Y.; Chen, Z. G. J. Org. Chem. 2009, 74, 6283.  doi: 10.1021/jo900481y

    30. [30]

      Frens, G. Nat. Phys. Sci. 1973, 241, 20.  doi: 10.1038/physci241020a0

    31. [31]

      Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2008, 39, 1679.  doi: 10.1002/jrs.v39:11

    32. [32]

      Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. Eur. J. 2016, 22, 5692.  doi: 10.1002/chem.201600167

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(7)
  • Abstract views(1291)
  • HTML views(344)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return