Citation: Du Han, Liang Hongtao, Yang Yang. Molecular Dynamics Simulation of Monolayer Confined Ice-Water Phase Equilibrium[J]. Acta Chimica Sinica, ;2018, 76(6): 483-490. doi: 10.6023/A18040128 shu

Molecular Dynamics Simulation of Monolayer Confined Ice-Water Phase Equilibrium

  • Corresponding author: Yang Yang, yyang@phy.ecnu.edu.cn
  • Received Date: 3 April 2018
    Available Online: 17 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 11504110)the National Natural Science Foundation of China 11504110

Figures(8)

  • Confined water became a recent hot topic in water science due to its extremely abundant structural phase behavior. However, there exist few studies focused on the coexistence of two or more confined water phases and their related properties. We present a methodology for studying the coexistences of two confined phases of water, based on a series equilibrium molecular-dynamics (MD) simulations using isobaric-isoenthalpic ensembles to iteratively predict the melting temperatures of the low dimensional confined crystal phase of water. The methodology is applied to the coexistence of the monolayer ice and water (described with a simple water model, i.e. SPC/E model) confined in the 0.65 nm size pore, yielding a direct determination of the melting point and extensive atomic-scale characterization for the mono-molecular layer containing the confined ice-water coexistence line. A finite value of lateral pressure (5000 bar) is adopted in the simulation, to mimic the high-pressure environment of the water molecules confined in the bi-graphene pocket in a recent experiment by Algara-Siller et al.[Nature, 519, 443 (2015)]. The rough structural type and the capillary fluctuation of the line, the microscopic mechanism of the solid-liquid structural transition along the line, as well as the transport of the point defect in the solid side of the coexistence line are identified directly from the MD trajectories. Various profiles of different thermodynamic properties across the coexistence line illustrate the unique features for the in-plane coexistence of the monolayer confined ice-water system, e.g., the unexpected large width of the crystal-melt transition region, and the compression state along the solid-liquid phase coexistence line. The methodology presented in the current study can be easily applied to the coexistence of multilayer confined ice and water phases, as well as the many other types of water models beyond the SPC/E used in current work. The achievement of the low dimensional confined ice-water phase coexistence could potentially facilitate the fundamental advancements in thermodynamics and kinetic theories of the low dimensional water science.
  • 加载中
    1. [1]

      Koga, K.; Zeng, X. C.; Tanaka, H. Phys. Rev. Lett. 1997, 79, 5262.  doi: 10.1103/PhysRevLett.79.5262

    2. [2]

      Bai, J.; Zeng, X. C. Proc. Nat. Acad. Sci. 2012, 109, 21240.  doi: 10.1073/pnas.1213342110

    3. [3]

      Ferguson, A. L.; Giovambattista, N.; Rossky, P. J.; Panagiotopoulos, A. Z.; Debenedetti, P. G. J. Phys. Chem. 2012, 137, 144501.  doi: 10.1063/1.4755750

    4. [4]

      Kumar, P.; Buldyrev, S. V.; Starr, F. W.; Giovambat-tista, N.; Stanley, H. E. Phys. Rev. E 2005, 72, 051503.  doi: 10.1103/PhysRevE.72.051503

    5. [5]

      Qiu, H.; Guo, W. Phys. Rev. Lett. 2013, 110, 195701.  doi: 10.1103/PhysRevLett.110.195701

    6. [6]

      Bai, J. C.; Angell, A.; Zeng, X. C. Proc. Nat. Acad. Sci. 2010, 107, 5718.  doi: 10.1073/pnas.0906437107

    7. [7]

      Johnston, J. C.; Kastelowitz, N.; Molinero, V. J. Phys. Chem. 2010, 133, 283101.

    8. [8]

      Algara-Siller, G.; Lehtinen, O.; Wang, F.; Nair, R.; Kaiser, U.; Wu, H.; Geim, A.; Grigorieva, I. Nature 2015, 519, 443.  doi: 10.1038/nature14295

    9. [9]

      Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys.-Chim. Sin. 2012, 28, 573.  doi: 10.3866/PKU.WHXB201112191

    10. [10]

      Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343, 752.  doi: 10.1126/science.1245711

    11. [11]

      Zhao, M. Y.; Yang, X. P.; Yang, X. N. Acta Phys.-Chim. Sin. 2015, 31, 1489.  doi: 10.3866/PKU.WHXB201506011

    12. [12]

      Sun, Y. R.; Yu, F.; Ma, J. Acta Phys.-Chim. Sin. 2017, 33, 2173.  doi: 10.3866/PKU.WHXB201705312

    13. [13]

      Bai, J.; Angell, C. A.; Zeng, X. C. Proc. Nat. Acad. Sci. 2010, 107, 5718.  doi: 10.1073/pnas.0906437107

    14. [14]

      Johnston, J. C.; Kastelowitz, N.; Molinero, V. J. Phys. Chem. 2010, 133, 283101.

    15. [15]

      Chen, J.; Schusteritsch, G.; Pickard, C. J.; Salzmann, C. G.; Michaelides, A. Phys. Rev. Lett. 2016, 116, 025501.  doi: 10.1103/PhysRevLett.116.025501

    16. [16]

      Koga, K.; Tanaka, H. J. Phys. Chem. 2005, 122, 104711.

    17. [17]

      Zangi, R.; Mark, A. E. Phys. Rev. Lett. 2003, 91, 025502.  doi: 10.1103/PhysRevLett.91.025502

    18. [18]

      Zhao, W. H.; Wang, L.; Bai, J.; Yuan, L. F.; Yang, J.; Zeng, X. C. Acc. Chem. Res. 2014, 47, 2505.  doi: 10.1021/ar5001549

    19. [19]

      Frolov, T.; Mishin, Y. J. Phys. Chem. 2015, 143, 044706.

    20. [20]

      Berendsen, H. J. C.; Grigerat, J. R.; Straatsma, T. P. Chem. Soc. 1987, 91, 24.

    21. [21]

      Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phys. Rev. Lett. 2009, 102, 050603.  doi: 10.1103/PhysRevLett.102.050603

    22. [22]

      Xia, X. Berkowitz, M. L. Phys. Rev. Lett. 1995, 74, 3193.  doi: 10.1103/PhysRevLett.74.3193

    23. [23]

      Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnalek, Z.; Kay, B. D. J. Am. Chem. Soc. 2009, 131, 12838.  doi: 10.1021/ja904708f

    24. [24]

      Yang, J.; Meng, S.; Xu, L.; Wang, E. Phys. Rev. Lett. 2004, 92, 146102.  doi: 10.1103/PhysRevLett.92.146102

    25. [25]

      Magda, J. J.; Tirell, M.; Davis, H. T. J. Chem. Phys. 1986, 84, 2901.

    26. [26]

      Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. J. Phys. Chem. B 2003, 107, 1345.  doi: 10.1021/jp0268112

    27. [27]

      Hockney, R. W. ; Eastwood, J. W. Computer Simulation Using Particles, CRC Press, U. S., 1988, 55.

    28. [28]

      Yeh, I. C.; Berkowitz, M. L. J. Chem. Phys. 1999, 111, 3155.  doi: 10.1063/1.479595

    29. [29]

      Plimpton, S. J. Comput. Phys. 1995, 117, 1.  doi: 10.1006/jcph.1995.1039

    30. [30]

      Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1997, 23, 327.

    31. [31]

      Frenkel, D. ; Smit, B. Understanding Molecular Simulation, 2nd ed., Academic Press, New York, 2002.

    32. [32]

      Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5749.  doi: 10.1063/1.449883

    33. [33]

      Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5759.  doi: 10.1063/1.449884

    34. [34]

      Davidchack, R. L.; Laird, B. B. Phys. Rev. Lett. 2000, 85, 4751.  doi: 10.1103/PhysRevLett.85.4751

    35. [35]

      Hoyt, J. J.; Asta, M.; Haxhimali, T.; Karma, A.; Napolitano, R. E.; Trivedi, R.; Laird, B. B.; Morris, J. R. MRS Bull. 2004, 29, 935.  doi: 10.1557/mrs2004.263

    36. [36]

      Frolov, T.; Mishin, Y. Model. Simul. Mater. Sci. Eng. 2010, 18, 074003.  doi: 10.1088/0965-0393/18/7/074003

    37. [37]

      Becker, C. A.; Hoyt, J. J.; Buta, D.; Asta, M. Phys. Rev. E 2007, 75, 061610.  doi: 10.1103/PhysRevE.75.061610

    38. [38]

      Beckera, C. A.; Asta, M.; Hoyt, J. J.; Foiles, S. M. J. Chem. Phys. 2006, 124, 164708.  doi: 10.1063/1.2185628

    39. [39]

      Benet, J.; MacDowell, L. G.; Sanz, E. J. Chem. Phys. 2014, 141, 034701.

    40. [40]

      Benet, J.; MacDowell, L. G.; Sanz, E. Phys. Chem. Chem. Phys. 2014, 16, 22159.  doi: 10.1039/C4CP03398A

    41. [41]

      Andersen, H. C. J. Chem. Phys. 1980, 72, 2384.  doi: 10.1063/1.439486

    42. [42]

      Puri, P.; Yang, V. J. Phys. Chem. C 2007, 111, 11776.  doi: 10.1021/jp0724774

    43. [43]

      Liang, H. T.; Laird, B. B.; Asta, M.; Yang, Y. Acta Mater. 2018, 143, 329.  doi: 10.1016/j.actamat.2017.09.059

    44. [44]

      Davidchack, R. L.; Laird, B. B. J. Chem. Phys. 1998, 108, 9452.  doi: 10.1063/1.476396

    45. [45]

      Buta, D.; Asta, M.; Hoyt, J. J. Phys. Rev. E 2008, 78, 031605.  doi: 10.1103/PhysRevE.78.031605

    46. [46]

      Morris, J. R. Phys. Rev. B 2002, 66, 144104.  doi: 10.1103/PhysRevB.66.144104

    47. [47]

      Yang, Y.; Olmsted, D.; Asta, M.; Laird, B. B. Acta Mater. 2012, 60, 4960.  doi: 10.1016/j.actamat.2012.05.016

  • 加载中
    1. [1]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(36)
  • Abstract views(3024)
  • HTML views(584)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return