Citation: Lin Weifen, Chen Nianjia, You Lexing, Zhou Shungui. Shewanella oneidensis MR-1 Affects the Mechanism of Cd Electrodeposition on Glassy Carbon Electrode[J]. Acta Chimica Sinica, ;2018, 76(7): 543-548. doi: 10.6023/A18030111 shu

Shewanella oneidensis MR-1 Affects the Mechanism of Cd Electrodeposition on Glassy Carbon Electrode

  • Corresponding author: You Lexing, lxyou@fafu.edu.cn
  • Received Date: 23 March 2018
    Available Online: 11 July 2018

    Fund Project: the National Natural Science Foundation of China 21603031the Natural Science Foundation of Fujian Province 2018J01668Project supported by the National Natural Science Foundation of China (No. 21603031) and the Natural Science Foundation of Fujian Province (No. 2018J01668)

Figures(8)

  • The geochemical cycle of heavy metal ion driven by microbes is widespread in nature. Previous studies are focused on the removal efficiency in the treatment of Cd in the bioelectrochemical systems; however, little is reported regarding the reduction mechanism of Cd on the electrode surface in the neutral physiological environment. In this work, we investigated the microbiological influence of Shewanella oneidensis MR-1 wild type and its mutant △omcA-△mtrc for Cd electrodeposition on a glassy carbon electrode (GCE) surface by using cyclic voltammetric (CV) and chronoamperometric methods. The CVs and I-t curves were carried out in a three-electrode system in the present of MR-1 cells (the value of optical density at 600 nm was 0.5) under nitrogen atmosphere. Much results were found in the present of MR-1 wild type:(1) the reducing peak potentials for Cd electrodeposition obviously negative shifted from CVs; (2) when the scan rate was comparatively slow (20 mV·s-1 vs. saturated calomel electrode), the Cd electrodeposition process contained two steps in the second scan in CVs which were Cd(Ⅱ)-Cd(Ⅰ)-Cd; (3) the average diffusion coefficient of Cd(Ⅱ) from bulk solution to GCE surface (0.93×10-6 cm·s-1), calculated from I-t curves, was slightly slower than that without MR-1 wild type (1.1×10-6 cm·s-1); (4) the progressive nucleation mechanism for Cd electrodeposition changed into an instantaneous three-dimensional nucleation by compared with their actual nucleation curves. Once the Cd electrodeposition process was performed in the solution with △omcA-△mtrc mutant, the diffusion of Cd(Ⅱ) from bulk solution to GCE surface (the average diffusion coefficient was 0.84×10-6 cm·s-1) changed much slower than before; nonetheless, the Cd electrodeposition was also consistent with the instantaneous three-dimensional nucleation. On the other hand, inhomogeneous Cd particles were observed on GCE surfaces at different stepping potentials from scanning electron microscopy (SEM) images. In contrast, the homogeneous Cd particles were found in the present of MR-1 wild type and △omcA-△mtrc mutant when the reduction potentials were higher than -0.9 V. These SEM results regarding the surface morphology of electrodeposited Cd particles also well agreed with three-dimensional nucleation mechanisms.
  • 加载中
    1. [1]

      Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell-Elkins, M. R.; Reilly, P. E.; Williams, D. J.; Moore, M. R. Toxicol. Lett. 2003, 137, 65.  doi: 10.1016/S0378-4274(02)00381-8

    2. [2]

      Ledin, M.; Krantz-Rülcker, C.; Allard, B. Soil Biol. Biochem. 1999, 31, 1639.  doi: 10.1016/S0038-0717(99)00073-5

    3. [3]

      Lloyd, J. R. FEMS Microbiol. Rev. 2003, 27, 411.  doi: 10.1016/S0168-6445(03)00044-5

    4. [4]

      Du, C. L.; Wang, L. H.; Jiang, N.; Huang, X. H. Acta Chim. Sinica 2011, 69, 601.
       

    5. [5]

      Cusick, R. D.; Kim, Y.; Logan, B. E. Science 2012, 335, 1474.  doi: 10.1126/science.1219330

    6. [6]

      Modin, O.; Wang, X.; Wu, X.; Rauch, S.; Fedje, K. K. J. Hazard Mater. 2012, 235/236, 291.  doi: 10.1016/j.jhazmat.2012.07.058

    7. [7]

      Choi, C.; Hu, N.; Lim, B. Bioresource Technol. 2014, 170, 361.  doi: 10.1016/j.biortech.2014.07.087

    8. [8]

      Purkayastha, D.; Mishra, U.; Biswas, S. J. Water Process Eng. 2014, 2, 105.  doi: 10.1016/j.jwpe.2014.05.009

    9. [9]

      Colantonio, N.; Kim, Y. J. Hazard Mater. 2016, 311, 134.  doi: 10.1016/j.jhazmat.2016.02.062

    10. [10]

      Scharifker, B.; Hills, G. Electrochim. Acta 1983, 28, 879.  doi: 10.1016/0013-4686(83)85163-9

    11. [11]

      Scharifker, B.; Mostany, J. J. Electroanal. Chem. 1984, 177, 13.  doi: 10.1016/0022-0728(84)80207-7

    12. [12]

      Zhou, S. M. Principle and Method of Metal Deposition, Shanghai Science and Technology Press, Shanghai, 1987, p. 197.

    13. [13]

      Wu, H. H.; Xu, S. K.; Zhou, S. M. Acta Phys.-Chim. Sin. 1985, 1, 357.  doi: 10.3866/PKU.WHXB19850410

    14. [14]

      Varia, J.; Martínez, S. S.; Orta, S. V.; Bull, S.; Roy, S. Electrochim. Acta 2013, 95, 125.  doi: 10.1016/j.electacta.2013.02.051

    15. [15]

      Varia, J.; Martínez, S. S.; Orta, S. V.; Bull, S. Electrochim. Acta 2014, 115, 344.  doi: 10.1016/j.electacta.2013.10.166

    16. [16]

      Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. J. Biotechnol. 2007, 128, 648.  doi: 10.1016/j.jbiotec.2006.11.014

    17. [17]

      De Corte, S.; Hennebel, T.; Verschuere, S.; Cuvelier, C.; Verstraete, W.; Boon, N. J. Chem. Technol. Biotechnol. 2011, 86, 547.  doi: 10.1002/jctb.v86.4

    18. [18]

      Lovley, D. R. Annu. Rev. Microbiol. 2012, 66, 391.  doi: 10.1146/annurev-micro-092611-150104

    19. [19]

      Kumar, A.; Hsu, L. H.; Kavanagh, P.; Barrière, F.; Lens, P. N. L.; Lapinsonnière, L.; Lienhard, V. J. H.; Schröder, U.; Jiang, X.; Leech, D. Nat. Rev. Chem. 2017, 1, 0024.  doi: 10.1038/s41570-017-0024

    20. [20]

      You, L. X.; Rao, L.; Tian, X. C.; Wu, R. R.; Wu, X.; Zhao, F.; Jiang, Y. X.; Sun, S. G. Electrochim. Acta 2015, 170, 131.  doi: 10.1016/j.electacta.2015.04.139

    21. [21]

      Tang, J.; Tian, X. C.; Zhou, F. Q.; Liu, Y. Q.; Lin, J. H. Acta Phys.-Chim. Sin. 2011, 27, 641.  doi: 10.3866/PKU.WHXB20110322

  • 加载中
    1. [1]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    8. [8]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(3)
  • Abstract views(1649)
  • HTML views(289)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return