Citation: Lin Weifen, Chen Nianjia, You Lexing, Zhou Shungui. Shewanella oneidensis MR-1 Affects the Mechanism of Cd Electrodeposition on Glassy Carbon Electrode[J]. Acta Chimica Sinica, ;2018, 76(7): 543-548. doi: 10.6023/A18030111 shu

Shewanella oneidensis MR-1 Affects the Mechanism of Cd Electrodeposition on Glassy Carbon Electrode

  • Corresponding author: You Lexing, lxyou@fafu.edu.cn
  • Received Date: 23 March 2018
    Available Online: 11 July 2018

    Fund Project: the National Natural Science Foundation of China 21603031the Natural Science Foundation of Fujian Province 2018J01668Project supported by the National Natural Science Foundation of China (No. 21603031) and the Natural Science Foundation of Fujian Province (No. 2018J01668)

Figures(8)

  • The geochemical cycle of heavy metal ion driven by microbes is widespread in nature. Previous studies are focused on the removal efficiency in the treatment of Cd in the bioelectrochemical systems; however, little is reported regarding the reduction mechanism of Cd on the electrode surface in the neutral physiological environment. In this work, we investigated the microbiological influence of Shewanella oneidensis MR-1 wild type and its mutant △omcA-△mtrc for Cd electrodeposition on a glassy carbon electrode (GCE) surface by using cyclic voltammetric (CV) and chronoamperometric methods. The CVs and I-t curves were carried out in a three-electrode system in the present of MR-1 cells (the value of optical density at 600 nm was 0.5) under nitrogen atmosphere. Much results were found in the present of MR-1 wild type:(1) the reducing peak potentials for Cd electrodeposition obviously negative shifted from CVs; (2) when the scan rate was comparatively slow (20 mV·s-1 vs. saturated calomel electrode), the Cd electrodeposition process contained two steps in the second scan in CVs which were Cd(Ⅱ)-Cd(Ⅰ)-Cd; (3) the average diffusion coefficient of Cd(Ⅱ) from bulk solution to GCE surface (0.93×10-6 cm·s-1), calculated from I-t curves, was slightly slower than that without MR-1 wild type (1.1×10-6 cm·s-1); (4) the progressive nucleation mechanism for Cd electrodeposition changed into an instantaneous three-dimensional nucleation by compared with their actual nucleation curves. Once the Cd electrodeposition process was performed in the solution with △omcA-△mtrc mutant, the diffusion of Cd(Ⅱ) from bulk solution to GCE surface (the average diffusion coefficient was 0.84×10-6 cm·s-1) changed much slower than before; nonetheless, the Cd electrodeposition was also consistent with the instantaneous three-dimensional nucleation. On the other hand, inhomogeneous Cd particles were observed on GCE surfaces at different stepping potentials from scanning electron microscopy (SEM) images. In contrast, the homogeneous Cd particles were found in the present of MR-1 wild type and △omcA-△mtrc mutant when the reduction potentials were higher than -0.9 V. These SEM results regarding the surface morphology of electrodeposited Cd particles also well agreed with three-dimensional nucleation mechanisms.
  • 加载中
    1. [1]

      Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell-Elkins, M. R.; Reilly, P. E.; Williams, D. J.; Moore, M. R. Toxicol. Lett. 2003, 137, 65.  doi: 10.1016/S0378-4274(02)00381-8

    2. [2]

      Ledin, M.; Krantz-Rülcker, C.; Allard, B. Soil Biol. Biochem. 1999, 31, 1639.  doi: 10.1016/S0038-0717(99)00073-5

    3. [3]

      Lloyd, J. R. FEMS Microbiol. Rev. 2003, 27, 411.  doi: 10.1016/S0168-6445(03)00044-5

    4. [4]

      Du, C. L.; Wang, L. H.; Jiang, N.; Huang, X. H. Acta Chim. Sinica 2011, 69, 601.
       

    5. [5]

      Cusick, R. D.; Kim, Y.; Logan, B. E. Science 2012, 335, 1474.  doi: 10.1126/science.1219330

    6. [6]

      Modin, O.; Wang, X.; Wu, X.; Rauch, S.; Fedje, K. K. J. Hazard Mater. 2012, 235/236, 291.  doi: 10.1016/j.jhazmat.2012.07.058

    7. [7]

      Choi, C.; Hu, N.; Lim, B. Bioresource Technol. 2014, 170, 361.  doi: 10.1016/j.biortech.2014.07.087

    8. [8]

      Purkayastha, D.; Mishra, U.; Biswas, S. J. Water Process Eng. 2014, 2, 105.  doi: 10.1016/j.jwpe.2014.05.009

    9. [9]

      Colantonio, N.; Kim, Y. J. Hazard Mater. 2016, 311, 134.  doi: 10.1016/j.jhazmat.2016.02.062

    10. [10]

      Scharifker, B.; Hills, G. Electrochim. Acta 1983, 28, 879.  doi: 10.1016/0013-4686(83)85163-9

    11. [11]

      Scharifker, B.; Mostany, J. J. Electroanal. Chem. 1984, 177, 13.  doi: 10.1016/0022-0728(84)80207-7

    12. [12]

      Zhou, S. M. Principle and Method of Metal Deposition, Shanghai Science and Technology Press, Shanghai, 1987, p. 197.

    13. [13]

      Wu, H. H.; Xu, S. K.; Zhou, S. M. Acta Phys.-Chim. Sin. 1985, 1, 357.  doi: 10.3866/PKU.WHXB19850410

    14. [14]

      Varia, J.; Martínez, S. S.; Orta, S. V.; Bull, S.; Roy, S. Electrochim. Acta 2013, 95, 125.  doi: 10.1016/j.electacta.2013.02.051

    15. [15]

      Varia, J.; Martínez, S. S.; Orta, S. V.; Bull, S. Electrochim. Acta 2014, 115, 344.  doi: 10.1016/j.electacta.2013.10.166

    16. [16]

      Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. J. Biotechnol. 2007, 128, 648.  doi: 10.1016/j.jbiotec.2006.11.014

    17. [17]

      De Corte, S.; Hennebel, T.; Verschuere, S.; Cuvelier, C.; Verstraete, W.; Boon, N. J. Chem. Technol. Biotechnol. 2011, 86, 547.  doi: 10.1002/jctb.v86.4

    18. [18]

      Lovley, D. R. Annu. Rev. Microbiol. 2012, 66, 391.  doi: 10.1146/annurev-micro-092611-150104

    19. [19]

      Kumar, A.; Hsu, L. H.; Kavanagh, P.; Barrière, F.; Lens, P. N. L.; Lapinsonnière, L.; Lienhard, V. J. H.; Schröder, U.; Jiang, X.; Leech, D. Nat. Rev. Chem. 2017, 1, 0024.  doi: 10.1038/s41570-017-0024

    20. [20]

      You, L. X.; Rao, L.; Tian, X. C.; Wu, R. R.; Wu, X.; Zhao, F.; Jiang, Y. X.; Sun, S. G. Electrochim. Acta 2015, 170, 131.  doi: 10.1016/j.electacta.2015.04.139

    21. [21]

      Tang, J.; Tian, X. C.; Zhou, F. Q.; Liu, Y. Q.; Lin, J. H. Acta Phys.-Chim. Sin. 2011, 27, 641.  doi: 10.3866/PKU.WHXB20110322

  • 加载中
    1. [1]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    19. [19]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(3)
  • Abstract views(1271)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return