Citation: Chu Wanyi, Tang Xiao, Li Zhen, Lin Jingcheng, Qian Jueshi. Influence Factors on the Microstructure of Ultrathin TiO2 Nanosheets Synthesized by Liquid Phase Method[J]. Acta Chimica Sinica, ;2018, 76(7): 549-555. doi: 10.6023/A18030100 shu

Influence Factors on the Microstructure of Ultrathin TiO2 Nanosheets Synthesized by Liquid Phase Method

  • Corresponding author: Qian Jueshi, qianjueshi@163.com
  • Received Date: 15 March 2018
    Available Online: 20 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51472037)the National Natural Science Foundation of China 51472037

Figures(9)

  • Synthesis of large scale ultrathin 2D structural TiO2 is challenging and meaningful in many fields of science and technology, because of their larger surface area and higher electron-hole pairs separation efficiency. In this work, a "bottomup" method is used to synthesize the large-size ultrathin TiO2 nanosheets at low temperature by liquid-phase. The mixture of tetrabutyl titanate and ethanol could hydrolyze in a dilute nitric acid solution with an ice-water bath and the obtained hydrolysates could peptize. After peptized, the hydrolysis products become to be very small TiO2 nanoclusters and they form a two-dimensional network structure via the orientation bonding formed by hydrogen bond. Continue to be aged at low temperature, the crystallization degree of samples will increase, and the networks eventually turn into TiO2 nanosheets. Effects of the concentration of nitric acid, ambient temperature and reactant concentration on the formation of two-dimensional structure TiO2 are studied in this work. The transmission electron microscope (TEM), ultraviolet-visible (UV-Vis) absorbance spectra, X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FTIR) are used to analyze the morphology, microstructure and properties of the samples, and the experiment of photocatalytic reduction of Cr(Ⅵ) is conducted to observe the photocatalytic activity of samples as well as to verify the effects of system parameters on the microstructure of TiO2 nanosheets. The results show that when the concentration of nitric acid is during 0.0217~0.0721 mol·L-1, the anatase TiO2 nanosheets that thinner than 1 nm could be obtained by peptizing and aging at 0~4℃. Excess nitric acid leads to crystalline and morphology transformation of TiO2, but lower concentration of nitric acid could prolong the peptizing time; increasing the ambient temperature will undermine the formation of two-dimensional structure; improving the amount of ethanol in the reactant will be helpful to disperse the hydrolysis products, and promote the process of the peptizing and formation of the two-dimensional structure.
  • 加载中
    1. [1]

      Takada, K. Nature 2003, 422, 53.  doi: 10.1038/nature01450

    2. [2]

      Dong, Y.; Mou, Z.; Du, Y.; Yang, P. Acta Chim. Sinica 2011, 69, 2379(in Chinese).
       

    3. [3]

      Lin, Y.; Guo, X. Acta Chim. Sinica 2014, 72, 277(in Chinese).
       

    4. [4]

      Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G. Nat. Mater. 2013, 12, 850.  doi: 10.1038/nmat3700

    5. [5]

      Tan, C.; Zhang, H. Chem. Soc. Rev. 2015, 44, 2713.  doi: 10.1039/C4CS00182F

    6. [6]

      Shen, C.; Zhang, J.; Shi, D.; Zhang, G. Acta Chim. Sinica 2015, 73, 954(in Chinese).
       

    7. [7]

      Sasaki, T.; Evina, Y.; Tanaka, T.; Tanaka, T.; Harada, M.; Watanabe, M.; Decher, G. Chem. Mater. 2001, 13, 4661.  doi: 10.1021/cm010478h

    8. [8]

      Sasaki, T.; Watanabe, M. J. Phys. Chem. B 1997, 101, 10159.  doi: 10.1021/jp9727658

    9. [9]

      Osada, M.; Sasaki, T. J. Mater. Chem. 2009, 19, 2503.  doi: 10.1039/b820160a

    10. [10]

      Wang, L. Z.; Sasaki, T. Chem. Rev. 2014, 114, 9455.  doi: 10.1021/cr400627u

    11. [11]

      Gong, X. Q.; Selloni, A. J. Phys. Chem. B 2005, 109, 19560.  doi: 10.1021/jp055311g

    12. [12]

      Liu, S.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2010, 132, 11914.  doi: 10.1021/ja105283s

    13. [13]

      Hu, C.; Zhang, X.; Li, X.; Yan, Y.; Xi, G.; Yang, H.; Bai, H. Chem. Eur. J. 2014, 20, 13557.  doi: 10.1002/chem.v20.42

    14. [14]

      Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. J. Phys. Chem. C 2012, 116, 7515.  doi: 10.1021/jp301256h

    15. [15]

      Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131, 3152.  doi: 10.1021/ja8092373

    16. [16]

      Zhang, J.; Wang, J.; Zhao, Z.; Yu, T.; Feng, J.; Yuan, Y.; Tang, Z.; Liu, Y.; Li, Z.; Zou, Z. Phys. Chem. Chem. Phys. 2012, 14, 4763.  doi: 10.1039/c2cp24039d

    17. [17]

      Yang, X. H.; Li, Z.; Sun, C.; Yang, H. G.; Li, C. Chem. Mater. 2011, 23, 3486.  doi: 10.1021/cm2008768

    18. [18]

      Liu, G.; Sun, C.; Yang, H. G.; Smith, S. C.; Wang, L.; Luand, G. Q.; Cheng, H. M. Chem. Commun. 2010, 46, 755.  doi: 10.1039/B919895D

    19. [19]

      Lv, K.; Xiang, Q.; Yu, J. Appl. Catal., B 2011, 104, 275.  doi: 10.1016/j.apcatb.2011.03.019

    20. [20]

      Xiang, G.; Wu, D.; He, J.; Wang, X. Chem. Commun. 2011, 47, 11456.  doi: 10.1039/c1cc15127d

    21. [21]

      Etgar, L.; Zhang, W.; Gabriel, S.; Hickey, S. G.; Nazeeruddin, M. K.; Eychmüller, A.; Liu, B.; Grätzel, M. Adv. Mater. 2012, 24, 2202.  doi: 10.1002/adma.201104497

    22. [22]

      Liu, S.; Jia, H.; Han, L.; Wang, J.; Gao, P.; Xu, D.; Yang, J.; Che, S. Adv. Mater. 2012, 24, 3201.  doi: 10.1002/adma.v24.24

    23. [23]

      Tang, X.; Chu, W.; Qian, J.; Lin, J.; Cao, G. Small 2017, 13, 1701964.  doi: 10.1002/smll.v13.48

    24. [24]

      Lin, J. C.; Tang, X.; Chu, W. Y. J. Inorg. Mater. 2017, 32, 863(in Chinese).
       

    25. [25]

      Satoh, N.; Nakashima, T.; Kamikura, K.; Yamamoto, K. Nature Nanotech. 2008, 3, 106.  doi: 10.1038/nnano.2008.2

    26. [26]

      Wu, M. M.; Long, J. B.; Huang, A. H.; Luo, Y. J.; Feng, S. H.; Xu, R. R. Langmuir 1999, 15, 8822.  doi: 10.1021/la990514f

    27. [27]

      Zhao, B.; Lin, L.; Chen, C.; Chai, Y.; He, D. Acta Chim. Sinica 2013, 71, 93(in Chinese).
       

    28. [28]

      Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem. 1995, 99, 16646.  doi: 10.1021/j100045a026

  • 加载中
    1. [1]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    2. [2]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    3. [3]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    4. [4]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    5. [5]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    6. [6]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(18)
  • Abstract views(1494)
  • HTML views(366)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return