Citation: Fan Yiming, Cheng Jun, Gao Yafei, Shi Min, Deng Liang. Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study[J]. Acta Chimica Sinica, ;2018, 76(6): 445-452. doi: 10.6023/A18030095 shu

Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study

  • Corresponding author: Shi Min, mshi@mail.sioc.ac.cn Deng Liang, deng@sioc.ac.cn
  • Received Date: 10 March 2018
    Available Online: 4 June 2018

    Fund Project: the National Natural Science Foundation of China 21690062the National Key Research and Development Program 2016YFA0202900the National Natural Science Foundation of China 21725104the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21432001Project supported by the National Key Research and Development Program (No. 2016YFA0202900), the National Natural Science Foundation of China (Nos. 21725104, 21690062, 21432001), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000) and the Fundamental Research Funds for the Central Universities (No. 222201717003)the Fundamental Research Funds for the Central Universities 222201717003

Figures(6)

  • The use of the N-adamantyl-substituted tris(NHC)borate ligand phenyltris(3-(1-adamantylimidazol-2-ylidene))borate (PhB(AdIm)3-) has enabled the preparation of the high-spin tetrahedral iron(I)-and iron(0)-N2 complexes[PhB(AdIm)3Fe(N2)] (2) and[K(18-C-6)(THF)] [PhB(AdIm)3Fe(N2)] (4), from the reduction of the ferrous precursor[PhB(AdIm)3FeCl] (1) and the iron(I) complex 2 with KC8 under N2, respectively. Single-crystal X-ray diffraction studies revealed a distorted tetrahedral coordination geometry for the iron centers in 2 and 4 with the terminally bonded N2 ligand sitting in the cavity composed by the three adamantyl groups of the borate ligand. The frequencies of the N-N stretching resonance (1928 and 1807 cm-1) of 2 and 4 are the lowest among the reported terminal N2complexes of iron(I) and iron(0), respectively. 57Fe Mössbauer spectrum (δ=0.59 mms-1; ΔEQ=1.31 mms-1) and solution magnetic susceptibility measurement (μeff=5.2(1) μB) of 2 supported its high-spin iron(I) nature. The cyclic voltammogram of 2 measured in THF shows a quasi-reversible redox waves with E1/2=-2.11 V (vs SCE), which is assignable to the corresponding redox process of[PhB(AdIm)3Fe(N2)]1-/0. In addition, the reaction of 2 with an excess amount of CO led to the formation of the bis(carbonyl)iron(I) complex, [PhB(AdIm)3Fe(CO)2] (3), that was characterized by IR spectrum, solution magnetic susceptibility measurement, 1H NMR, as well as elemental analysis. The protonation of 2 and 4 with HCl or HOTf at -78℃ only led to the formation of NH2NH2 and NH3 in low yields[less than 9(3)% and 5(3)% (per mol Fe), respectively]. However, 1, 2, and 4 proved effective catalysts for the reductive silylation of N2by KC8 and Me3SiCl to afford N(SiMe3)3 with comparable catalytic activity. The TON of these catalytic systems could reach 87 using 0.005 mmol of the catalyst, 2000 equiv. of KC8, and 2000 equiv. of Me3SiCl in 10 mL Et2O at room temperature after 24 h.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Hoffman, B. M. ; Lukoyanov, D. ; Yang, Z. -Y. ; Dean, D. R. ; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041. (b) Čorić, I. ; Holland, P. L. J. Am. Chem. Soc. 2016, 138, 7200.

    4. [4]

      (a) Rittle, J. ; Peters, J. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15898. (b) Creutz, S. E. ; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105. (c) Čorić, I. ; Mercado, B. Q. ; Bill, E. ; Vinyard, D. J. ; Holland, P. L. Nature 2015, 526, 96. (d) Ung, G. ; Peters, J. C. Angew. Chem., Int. Ed. 2015, 54, 532. (e) Ouyang, Z. -W. ; Cheng, J. ; Li, L. -L. ; Bao, X. -L. ; Deng, L. Chem. -Eur. J. 2016, 22, 14162.

    5. [5]

      (a) Kästner, J. ; Blöchl, P. E. J. Am. Chem. Soc. 2007, 129, 2998. (b) Spatzal, T. ; Perez, K. A. ; Einsle, O. ; Howard, J. B. ; Rees, D. C. Science 2014, 345, 1620.

    6. [6]

      (a) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044. (b) Crossland, J. L. ; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883. (c) Ohki, Y. ; Seino, H. Dalton Trans. 2016, 45, 874. (d) Danopoulos, A. A. ; Wright, J. A. ; Motherwell, W. B. Chem. Commun. 2005, 784. (e) Pugh, D. ; Wells, N. J. ; Evans, D. J. ; Danopoulos, A. A. Dalton Trans. 2009, 7189. (f) Yu, R. P. ; Darmon, J. M. ; Hoyt, J. M. ; Margulieux, G. W. ; Turner, Z. R. ; Chirik, P. J. ACS Catal. 2012, 2, 1760. (g) Bartholomew, E. R. ; Volpe, E. C. ; Wolczanski, P. T. ; Lobkovsky, E. B. ; Cundari, T. R. J. Am. Chem. Soc. 2013, 135, 3511.

    7. [7]

      (a) Bourissou, D. ; Guerret, O. ; Gabbaï, F. P. ; Bertrand, G. Chem. Rev. 2000, 100, 39. (b) Glorius, F., N-Heterocyclic Carbenes in Transition Metal Catalysis, Topics in Organometallic Chemistry, Vol. 21, Springer, Berlin, 2007. (c) Hahn, F. E. ; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122.

    8. [8]

      (a) Ingleson, M. J. ; Layfield, R. A. Chem. Commun. 2012, 48, 3579. (b) Riener, K. ; Haslinger, S. ; Raba, A. ; Högerl, M. P. ; Cokoja, M. ; Herrmann, W. A. ; Kühn, F. E. Chem. Rev. 2014, 114, 5215.

    9. [9]

      McSkimming, A.; Harman, W. H. J. Am. Chem. Soc. 2015, 137, 8940.  doi: 10.1021/jacs.5b06337

    10. [10]

      Cowley, R. E.; Bontchev, R. P.; Duesler, E. N.; Smith, J. M. Inorg. Chem. 2006, 45, 9771.  doi: 10.1021/ic061299a

    11. [11]

      Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 10515.  doi: 10.1021/ja8027372

    12. [12]

      (a) Ouyang, Z. -W. ; Meng, Y. ; Cheng, J. ; Xiao, J. ; Gao, S. ; Deng, L. Organometallics 2016, 35, 1361. (b) Ohki, Y. ; Hoshino, R. ; Tatsumi, K. Organometallics 2016, 35, 1368.

    13. [13]

      Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int. Ed. 2007, 46, 5768.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.  doi: 10.1021/ic3024953

    15. [15]

      Hounjet, L. J.; Adhikari, D.; Pink, M.; Carroll, P. J.; Mindiola, D. J. Z. Anorg. Allg. Chem. 2015, 641, 45.  doi: 10.1002/zaac.201400173

    16. [16]

      Smith, J. M. Comments Inorg. Chem. 2008, 29, 189.  doi: 10.1080/02603590802590080

    17. [17]

      Hickey, A. K.; Chen, C.; Pink, M.; Smith, J. M. Organometallics 2015, 34, 4560.  doi: 10.1021/acs.organomet.5b00646

    18. [18]

      Lee, Y.; Mankad, N. P.; Peters, J. C. Nat. Chem. 2010, 2, 558.  doi: 10.1038/nchem.660

    19. [19]

      Komiya, S.; Akita, M.; Yoza, A.; Kasuga, N.; Fukuoka, A.; Kai, Y. J. Chem. Soc., Chem. Commun. 1993, 787.
       

    20. [20]

      Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.  doi: 10.1021/ic3024953

    21. [21]

      Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.  doi: 10.1021/ja4114962

    22. [22]

      (a) Hills, A. ; Hughes, D. A. ; Jimenez-Tenorio, M. ; Leigh, G. J. ; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3041. (b) Hall, D. A. ; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1996, 3539.

    23. [23]

      Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. J. Am. Chem. Soc. 2005, 127, 10184.  doi: 10.1021/ja053030g

    24. [24]

      George, T. A.; Rose, D. J.; Chang, Y.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295.  doi: 10.1021/ic00109a046

    25. [25]

      Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733.
       

    26. [26]

      Shiina, K. J. Am. Chem. Soc. 1972, 94, 9266.  doi: 10.1021/ja00781a068

    27. [27]

      Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.  doi: 10.1021/ja109181n

    28. [28]

      Liao, Q.; Saffon-Merceron, N.; Mezailles, N. Angew. Chem., Int. Ed. 2014, 53, 14206.  doi: 10.1002/anie.v53.51

    29. [29]

      Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. J. Am. Chem. Soc. 2017, 139, 5596.  doi: 10.1021/jacs.7b01965

    30. [30]

      Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 4638.  doi: 10.1021/jacs.5b01445

    31. [31]

      Gao, Y.-F.; Li, G.-Y.; Deng, L. J. Am. Chem. Soc. 2018, 140, 2239.  doi: 10.1021/jacs.7b11660

    32. [32]

      Weatherburu, M. W. Anal. Chem. 1967, 39, 971.  doi: 10.1021/ac60252a045

    33. [33]

      Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.  doi: 10.1021/ac60072a044

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(31)
  • Abstract views(1493)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return