Citation: Fan Yiming, Cheng Jun, Gao Yafei, Shi Min, Deng Liang. Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study[J]. Acta Chimica Sinica, ;2018, 76(6): 445-452. doi: 10.6023/A18030095 shu

Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study

  • Corresponding author: Shi Min, mshi@mail.sioc.ac.cn Deng Liang, deng@sioc.ac.cn
  • Received Date: 10 March 2018
    Available Online: 4 June 2018

    Fund Project: the National Natural Science Foundation of China 21690062the National Key Research and Development Program 2016YFA0202900the National Natural Science Foundation of China 21725104the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21432001Project supported by the National Key Research and Development Program (No. 2016YFA0202900), the National Natural Science Foundation of China (Nos. 21725104, 21690062, 21432001), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000) and the Fundamental Research Funds for the Central Universities (No. 222201717003)the Fundamental Research Funds for the Central Universities 222201717003

Figures(6)

  • The use of the N-adamantyl-substituted tris(NHC)borate ligand phenyltris(3-(1-adamantylimidazol-2-ylidene))borate (PhB(AdIm)3-) has enabled the preparation of the high-spin tetrahedral iron(I)-and iron(0)-N2 complexes[PhB(AdIm)3Fe(N2)] (2) and[K(18-C-6)(THF)] [PhB(AdIm)3Fe(N2)] (4), from the reduction of the ferrous precursor[PhB(AdIm)3FeCl] (1) and the iron(I) complex 2 with KC8 under N2, respectively. Single-crystal X-ray diffraction studies revealed a distorted tetrahedral coordination geometry for the iron centers in 2 and 4 with the terminally bonded N2 ligand sitting in the cavity composed by the three adamantyl groups of the borate ligand. The frequencies of the N-N stretching resonance (1928 and 1807 cm-1) of 2 and 4 are the lowest among the reported terminal N2complexes of iron(I) and iron(0), respectively. 57Fe Mössbauer spectrum (δ=0.59 mms-1; ΔEQ=1.31 mms-1) and solution magnetic susceptibility measurement (μeff=5.2(1) μB) of 2 supported its high-spin iron(I) nature. The cyclic voltammogram of 2 measured in THF shows a quasi-reversible redox waves with E1/2=-2.11 V (vs SCE), which is assignable to the corresponding redox process of[PhB(AdIm)3Fe(N2)]1-/0. In addition, the reaction of 2 with an excess amount of CO led to the formation of the bis(carbonyl)iron(I) complex, [PhB(AdIm)3Fe(CO)2] (3), that was characterized by IR spectrum, solution magnetic susceptibility measurement, 1H NMR, as well as elemental analysis. The protonation of 2 and 4 with HCl or HOTf at -78℃ only led to the formation of NH2NH2 and NH3 in low yields[less than 9(3)% and 5(3)% (per mol Fe), respectively]. However, 1, 2, and 4 proved effective catalysts for the reductive silylation of N2by KC8 and Me3SiCl to afford N(SiMe3)3 with comparable catalytic activity. The TON of these catalytic systems could reach 87 using 0.005 mmol of the catalyst, 2000 equiv. of KC8, and 2000 equiv. of Me3SiCl in 10 mL Et2O at room temperature after 24 h.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Hoffman, B. M. ; Lukoyanov, D. ; Yang, Z. -Y. ; Dean, D. R. ; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041. (b) Čorić, I. ; Holland, P. L. J. Am. Chem. Soc. 2016, 138, 7200.

    4. [4]

      (a) Rittle, J. ; Peters, J. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15898. (b) Creutz, S. E. ; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105. (c) Čorić, I. ; Mercado, B. Q. ; Bill, E. ; Vinyard, D. J. ; Holland, P. L. Nature 2015, 526, 96. (d) Ung, G. ; Peters, J. C. Angew. Chem., Int. Ed. 2015, 54, 532. (e) Ouyang, Z. -W. ; Cheng, J. ; Li, L. -L. ; Bao, X. -L. ; Deng, L. Chem. -Eur. J. 2016, 22, 14162.

    5. [5]

      (a) Kästner, J. ; Blöchl, P. E. J. Am. Chem. Soc. 2007, 129, 2998. (b) Spatzal, T. ; Perez, K. A. ; Einsle, O. ; Howard, J. B. ; Rees, D. C. Science 2014, 345, 1620.

    6. [6]

      (a) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044. (b) Crossland, J. L. ; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883. (c) Ohki, Y. ; Seino, H. Dalton Trans. 2016, 45, 874. (d) Danopoulos, A. A. ; Wright, J. A. ; Motherwell, W. B. Chem. Commun. 2005, 784. (e) Pugh, D. ; Wells, N. J. ; Evans, D. J. ; Danopoulos, A. A. Dalton Trans. 2009, 7189. (f) Yu, R. P. ; Darmon, J. M. ; Hoyt, J. M. ; Margulieux, G. W. ; Turner, Z. R. ; Chirik, P. J. ACS Catal. 2012, 2, 1760. (g) Bartholomew, E. R. ; Volpe, E. C. ; Wolczanski, P. T. ; Lobkovsky, E. B. ; Cundari, T. R. J. Am. Chem. Soc. 2013, 135, 3511.

    7. [7]

      (a) Bourissou, D. ; Guerret, O. ; Gabbaï, F. P. ; Bertrand, G. Chem. Rev. 2000, 100, 39. (b) Glorius, F., N-Heterocyclic Carbenes in Transition Metal Catalysis, Topics in Organometallic Chemistry, Vol. 21, Springer, Berlin, 2007. (c) Hahn, F. E. ; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122.

    8. [8]

      (a) Ingleson, M. J. ; Layfield, R. A. Chem. Commun. 2012, 48, 3579. (b) Riener, K. ; Haslinger, S. ; Raba, A. ; Högerl, M. P. ; Cokoja, M. ; Herrmann, W. A. ; Kühn, F. E. Chem. Rev. 2014, 114, 5215.

    9. [9]

      McSkimming, A.; Harman, W. H. J. Am. Chem. Soc. 2015, 137, 8940.  doi: 10.1021/jacs.5b06337

    10. [10]

      Cowley, R. E.; Bontchev, R. P.; Duesler, E. N.; Smith, J. M. Inorg. Chem. 2006, 45, 9771.  doi: 10.1021/ic061299a

    11. [11]

      Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 10515.  doi: 10.1021/ja8027372

    12. [12]

      (a) Ouyang, Z. -W. ; Meng, Y. ; Cheng, J. ; Xiao, J. ; Gao, S. ; Deng, L. Organometallics 2016, 35, 1361. (b) Ohki, Y. ; Hoshino, R. ; Tatsumi, K. Organometallics 2016, 35, 1368.

    13. [13]

      Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int. Ed. 2007, 46, 5768.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.  doi: 10.1021/ic3024953

    15. [15]

      Hounjet, L. J.; Adhikari, D.; Pink, M.; Carroll, P. J.; Mindiola, D. J. Z. Anorg. Allg. Chem. 2015, 641, 45.  doi: 10.1002/zaac.201400173

    16. [16]

      Smith, J. M. Comments Inorg. Chem. 2008, 29, 189.  doi: 10.1080/02603590802590080

    17. [17]

      Hickey, A. K.; Chen, C.; Pink, M.; Smith, J. M. Organometallics 2015, 34, 4560.  doi: 10.1021/acs.organomet.5b00646

    18. [18]

      Lee, Y.; Mankad, N. P.; Peters, J. C. Nat. Chem. 2010, 2, 558.  doi: 10.1038/nchem.660

    19. [19]

      Komiya, S.; Akita, M.; Yoza, A.; Kasuga, N.; Fukuoka, A.; Kai, Y. J. Chem. Soc., Chem. Commun. 1993, 787.
       

    20. [20]

      Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.  doi: 10.1021/ic3024953

    21. [21]

      Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.  doi: 10.1021/ja4114962

    22. [22]

      (a) Hills, A. ; Hughes, D. A. ; Jimenez-Tenorio, M. ; Leigh, G. J. ; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3041. (b) Hall, D. A. ; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1996, 3539.

    23. [23]

      Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. J. Am. Chem. Soc. 2005, 127, 10184.  doi: 10.1021/ja053030g

    24. [24]

      George, T. A.; Rose, D. J.; Chang, Y.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295.  doi: 10.1021/ic00109a046

    25. [25]

      Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733.
       

    26. [26]

      Shiina, K. J. Am. Chem. Soc. 1972, 94, 9266.  doi: 10.1021/ja00781a068

    27. [27]

      Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.  doi: 10.1021/ja109181n

    28. [28]

      Liao, Q.; Saffon-Merceron, N.; Mezailles, N. Angew. Chem., Int. Ed. 2014, 53, 14206.  doi: 10.1002/anie.v53.51

    29. [29]

      Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. J. Am. Chem. Soc. 2017, 139, 5596.  doi: 10.1021/jacs.7b01965

    30. [30]

      Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 4638.  doi: 10.1021/jacs.5b01445

    31. [31]

      Gao, Y.-F.; Li, G.-Y.; Deng, L. J. Am. Chem. Soc. 2018, 140, 2239.  doi: 10.1021/jacs.7b11660

    32. [32]

      Weatherburu, M. W. Anal. Chem. 1967, 39, 971.  doi: 10.1021/ac60252a045

    33. [33]

      Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.  doi: 10.1021/ac60072a044

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    8. [8]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(33)
  • Abstract views(1652)
  • HTML views(303)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return