Citation: Zhu Mingjing, Peng Juan, Tang Ping, Qiu Feng. Preparation and Characterization of Highly Stable and Aqueous Dispersion of Conjugated Polyelectrolyte/Single-Walled Carbon Nanotube Nanocomposites[J]. Acta Chimica Sinica, ;2018, 76(6): 453-459. doi: 10.6023/A18030090 shu

Preparation and Characterization of Highly Stable and Aqueous Dispersion of Conjugated Polyelectrolyte/Single-Walled Carbon Nanotube Nanocomposites

  • Corresponding author: Peng Juan, juanpeng@fudan.edu.cn
  • Received Date: 6 March 2018
    Available Online: 20 June 2018

    Fund Project: the National Natural Science Foundation of China 21674024Ministry of Science and Technology of China 2016YFA0203301the National Natural Science Foundation of China 21320102005the National Natural Science Foundation of China 21274029Project supported by the National Natural Science Foundation of China (Nos. 21674024, 21274029, 21320102005) and Ministry of Science and Technology of China (No. 2016YFA0203301)

Figures(8)

  • The dispersion of single-walled carbon nanotubes (SWNTs) is a key point to develop their extensive applications. Especially, to meet the requirements of future green chemistry, the preparation of environmentally-friendly, highly stable and well-distributed SWNTs in aqueous solution becomes particularly important. Based on it, a water-soluble conjugated polyelectrolyte, namely poly[3-[6-(N-methylimidazolium)hexyl]thiophene] (P3MHT) was designed and used to disperse SWNTs through non-covalent strategy. P3MHT was synthesized by a modified Grignard metathesis (GRIM) polymerization followed by quaternization of the bromohexyl side groups of the poly[3-(6-bromohexyl)thiophene] with N-methylimidazole. The P3MHT/SWNTs nanocomposites were prepared by mixing P3MHT and SWNTs in water during ultrasonication followed by centrifugation. UV-vis absorption spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscope (TEM), Zeta-nano electric potential analyzer, thermogravimetric (TGA) analysis were applied to characterize P3MHT/SWNTs nanocomposites. Compared to the commercial sodium dodecyl sulfate (SDS) surfactant to disperse SWNTs in aqueous solution, P3MHT exhibited a much better ability to disperse SWNTs under the same condition, i.e., the concentration of SWNTs dispersed by P3MHT was about two times than that of SWNTs dispersed by SDS. In P3MHT/SWNTs nanocomposite solution, SWNTs were exfoliated to form individuals or small bundles with an average size of 298 nm. However, in SDS/SWNTs solution, SWNTs preferred to form small aggregates with an average size of more than 500 nm. The P3MHT backbones were wrapped around individual SWNTs via π-π interactions to form the charge-transfer complexes. The ionic side chains of P3MHT not only made the nanocomposites dispersed in water, but also prevented the aggregation of SWNTs by electrostatic repulsion, resulting in aqueous dispersion of P3MHT/SWNTs nanocomposites. While SDS molecules were adsorbed on the surface of SWNTs via hydrophobic alkyl chains, which was much weaker than the π-π interactions between P3MHT and SWNTs. Such P3MHT/SWNTs nanocomposite solution exhibited high stability which remained almost unchanged after 6 months while SDS/SWNTs nanocomposite had already precipitated then. Overall, it provides a promising and simple method to develop highly stable and water processed SWNTs.
  • 加载中
    1. [1]

      Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Chem. Soc. Rev. 2013, 42, 2824.  doi: 10.1039/C2CS35335K

    2. [2]

      Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L. M. Science 2017, 355, 271.  doi: 10.1126/science.aaj1628

    3. [3]

      Liu, S.; Guo, X. F. Acta Chim. Sinica 2013, 71, 478(in Chinese).
       

    4. [4]

      Zhang, S.; Kang, L.; Wang, X.; Tong, L.; Yang, L.; Wang, Z.; Qi, K.; Deng, S.; Li, Q.; Bai, X.; Ding, F.; Zhang, J. Nature 2017, 543, 234.  doi: 10.1038/nature21051

    5. [5]

      Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z.; Peng, F.; Li, X.; Li, R.; Li, Y.; Li, M.; Bai, X.; Ding, F.; Li, Y. Nature 2014, 510, 522.  doi: 10.1038/nature13434

    6. [6]

      Li, L.; Jia, G. X.; Wang, X. X.; Wu, T. W.; Song, X. W.; An, S. L. Acta Chim. Sinica 2017, 75, 284(in Chinese).  doi: 10.7503/cjcu20160630
       

    7. [7]

      Rösner, B.; Guldi, D. M.; Chen, J.; Minett, A. I.; Fink, R. H. Nanoscale 2014, 6, 3695.  doi: 10.1039/c3nr05788g

    8. [8]

      Sang, W. K.; Kim, T.; Kim, Y. S.; Hong, S. C.; Lim, H. J.; Yang, S. J.; Park, C. R. Carbon 2012, 50, 3.  doi: 10.1016/j.carbon.2011.08.011

    9. [9]

      Guo, L. H.; Gong, L. H.; Yuan, F. L.; Zhang, B.; Bai, X. D.; Lian, Y. F. Acta Chim. Sinica 2005, 63, 1936(in Chinese).  doi: 10.3321/j.issn:0567-7351.2005.20.016
       

    10. [10]

      Lin, G. F.; Meng, L. J.; Zhang, X. K.; Lu, Q. H. Prog. Chem. 2010, 22, 331(in Chinese).
       

    11. [11]

      Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Chem. Soc. Rev. 2009, 38, 2214.  doi: 10.1039/b518111a

    12. [12]

      Liang, L.; Xie, W.; Fang, S.; He, F.; Yin, B.; Tlili, C.; Wang, D.; Qiu, S.; Li, Q. J. Mater. Chem. C 2017, 5, 11339.  doi: 10.1039/C7TC04390B

    13. [13]

      Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Acc. Chem. Res. 2014, 47, 2446.  doi: 10.1021/ar500141j

    14. [14]

      Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; Spakowitz, A.; Galli, G.; Gygi, F.; Wong, P. H.-S.; Tok, J. B.-H.; Kim, J. M.; Bao, Z. Nat. Commun. 2011, 2, 541.  doi: 10.1038/ncomms1545

    15. [15]

      Yang, H.; Bezugly, V.; Kunstmann, J.; Filoramo, A.; Cuniberti, G. ACS Nano 2015, 9, 9012.  doi: 10.1021/acsnano.5b03051

    16. [16]

      Liu, Z.; Li, H.; Qiu, Z.; Zhang, S. L.; Zhang, Z. B. Adv. Mater. 2012, 24, 3633.  doi: 10.1002/adma.v24.27

    17. [17]

      Yang, S.; Meng, D.; Sun, J.; Yan, H.; Yong, H.; Geng, J. ACS Appl. Mater. Interfaces 2014, 6, 7686.  doi: 10.1021/am500973m

    18. [18]

      Derenskyi, V.; Gomulya, W.; Rios, J. M.; Fritsch, M.; Fröhlich, N.; Jung, S.; Allard, S.; Bisri, S. Z.; Gordiichuk, P.; Herrmann, A.; Scherf, U.; Loi, M. A. Adv. Mater. 2014, 26, 5969.  doi: 10.1002/adma.201401395

    19. [19]

      Mai, C. K.; Liu, J.; Evans, C. M.; Segalman, R. A.; Chabinyc, M. L.; Cahill, D. G.; Bazan, G. C. Macromolecules 2016, 49, 4957.  doi: 10.1021/acs.macromol.6b00546

    20. [20]

      Li, Y.; Mai, C. K.; Phan, H.; Liu, X.; Nguyen, T. Q.; Bazan, G. C.; Chan-Park, M. B. Adv. Mater. 2014, 26, 4697.  doi: 10.1002/adma.v26.27

    21. [21]

      Kang, Y. K.; Lee, O. S.; Deria, P.; Sang, H. K.; Park, T. H.; Bonnell, D. A.; Saven, J. G.; Therien, M. J. Nano Lett. 2009, 9, 1414.  doi: 10.1021/nl8032334

    22. [22]

      Deria, P.; Olivier, J. H.; Park, J.; Therien, M. J. J. Am. Chem. Soc. 2014, 136, 14193.  doi: 10.1021/ja507457z

    23. [23]

      Mai, C. K.; Russ, B.; Fronk, S. L.; Hu, N.; Chan-Park, M. B.; Urban, J. J.; Segalman, R. A.; Chabinyc, M. L.; Bazan, G. C. Energy Environ. Sci. 2015, 8, 2341.  doi: 10.1039/C5EE00938C

    24. [24]

      Osaka, I.; Mccullough, R. D. Acc. Chem. Res. 2008, 41, 1202.  doi: 10.1021/ar800130s

    25. [25]

      He, M.; Zhao, L.; Wang, J.; Han, W.; Yang, Y.; Qiu, F.; Lin, Z. ACS Nano 2010, 4, 3241.  doi: 10.1021/nn100543w

    26. [26]

      He, M.; Ge, J.; Lin, Z.; Feng, X.; Wang, X.; Lu, H.; Yang, Y.; Qiu, F. Energy Environ. Sci. 2012, 5, 8351.  doi: 10.1039/c2ee21803h

    27. [27]

      Pan, S.; He, L.; Peng, J.; Qiu, F.; Lin, Z. Angew. Chem. Int. Ed. 2016, 55, 8686.  doi: 10.1002/anie.201603189

    28. [28]

      Yang, X.; Ge, J.; He, M.; Ye, Z.; Liu, X.; Peng, J.; Qiu, F. Macromolecules 2016, 49, 287.  doi: 10.1021/acs.macromol.5b02001

    29. [29]

      Zhu, M.; Kim, H.; Yu, J. J.; Park, S.; Du, Y. R.; Kim, K.; Tang, P.; Qiu, F.; Kim, D. H.; Peng, L. J. Mater. Chem. A 2016, 4, 18432.  doi: 10.1039/C6TA08181A

    30. [30]

      Xia, H.; Ye, Z.; Liu, X.; Peng, J.; Qiu, F. RSC Adv.2014, 4, 19646.  doi: 10.1039/c4ra01127a

    31. [31]

      Duarte, A.; Pu, K. Y.; Liu, B.; Bazan, G. C. Chem. Mater. 2011, 23, 501.  doi: 10.1021/cm102196t

    32. [32]

      Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S. Chem. Soc. Rev. 2013, 42, 6620.  doi: 10.1039/c3cs60036j

    33. [33]

      Rochat, S.; Swager, T. M. ACS Appl. Mater. Interfaces 2013, 5, 4488.  doi: 10.1021/am400939w

    34. [34]

      Ghoos, T.; Malinkiewicz, O.; Conings, B.; Lutsen, L.; Vanderzande, D. J.; Bolink, H. J.; Maes, W. RSC Adv. 2013, 3, 25197.  doi: 10.1039/c3ra43986k

    35. [35]

      Liang, S.; Zhao, Y.; Adronov, A. J. Am. Chem. Soc. 2014, 136, 970.  doi: 10.1021/ja409918n

    36. [36]

      Bounioux, C.; Bar-Hen, A.; Yerushalmi-Rozen, R. Chem. Commun. 2015, 51, 6343.  doi: 10.1039/C5CC00802F

    37. [37]

      Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc. 2002, 124, 9034.  doi: 10.1021/ja026104m

    38. [38]

      Rao, G. P.; Lu, C.; Su, F. Sep. Purif. Technol. 2007, 58, 224.  doi: 10.1016/j.seppur.2006.12.006

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(9)
  • Abstract views(1216)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return