Citation: Li Haofei, Qiao Fulin, Fan Yaxun, Wang Yilin. Aggregation in the Mixture of Branched Carboxylate Salts and Sulfonate Surfactants with Different Oligomeric Degrees[J]. Acta Chimica Sinica, ;2018, 76(7): 564-574. doi: 10.6023/A18030086 shu

Aggregation in the Mixture of Branched Carboxylate Salts and Sulfonate Surfactants with Different Oligomeric Degrees

  • Corresponding author: Wang Yilin, yilinwang@iccas.ac.cn
  • Received Date: 3 March 2018
    Available Online: 3 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21633002)the National Natural Science Foundation of China 21633002

Figures(7)

  • Understanding the effects of molecules with branched structures on surface activities and micellization of star-shaped oligomeric surfactants will promote the applications of oligomeric surfactants. The present work has studied the interactions and aggregation of branched carboxylate 2-hexyldecanoic acid (HDA) and 2, 2, 4, 8, 10, 10-hexamethylundecane-5-carboxylic acid (HMLCA) with single chain sodium dodecyl sulfonate (SDoS) and star-shaped tetrameric sulfonate surfactant (EDA-(C12SO3Na)4) in aqueous solution of pH 11 by surface tension, ζ-Potential and small angle neutron scattering (SANS). Surface tension measurements have shown that the addition of HDA or HMLCA can significantly reduce the surface tension at critical micellar concentration (CMC), meanwhile, the CMC values increase slightly as the mole fraction of HDA or HMLCA increases. The interaction parameter (β), calculated according to the non-ideal mixed solution model, indicate that different interaction degrees exist between branched carboxylate and sulfonate surfactant on surface activities and micellization. The four mixtures all exhibit synergism in surface tension reduction efficiency. The mixtures of single chain sulfonate surfactant and branched carboxylate also exhibit synergism in micelle formation, whereas the mixtures of tetrameric sulfonate surfactant and branched carboxylate do not, although the attractive interaction of HDA/EDA-(C12SO3Na)4 and HMLCA/EDA-(C12SO3Na)4 is stronger than that of HDA/SDoS and HMLCA/SDoS in mixed micelles. Taking HDA as a representative, SANS and ζ-Potential results reveal that the addition of HDA into these two sulfonate surfactants leads to different aggregate transitions in the solution. For HDA/SDoS, when the molar fraction of HDA (XHDA) is constant and the total surfactant concentration increases, spherical micelles transfer into rod-like micelles. For the HDA/EDA-(C12SO3Na)4 mixture, the rod-like micelles become shorter as XHDA increases at a fixed total surfactant concentration, while the rod-like micelles are growing longer with increasing XHDA at a fixed total surfactant concentration. This observation suggests that the branched structure of carboxylates can improve the aggregation ability of the mixed system. In addition these mixtures show excellent performance at emulsifying dodecane, and HDA or HMLCA can greatly reduce the dosage of sulfonate surfactants.
  • 加载中
    1. [1]

      Zana, R. Adv. Colloid Interface Sci. 2002, 97, 205.  doi: 10.1016/S0001-8686(01)00069-0

    2. [2]

      Han, Y. C.; Fan, Y. X.; Wu, C. X.; Hou, Y. B.; Wang, Y. L. Sci. Sin. Chem. 2015, 45, 327(in Chinese).
       

    3. [3]

      Yoshimura, T.; Ohno, A.; Esumi, K. J. Colloid Interface Sci. 2004, 272, 191.  doi: 10.1016/j.jcis.2003.12.021

    4. [4]

      Yoshimura, T.; Yoshida, H.; Ohno, A.; Esumi, K. J. Colloid Interface Sci. 2003, 267, 167.  doi: 10.1016/S0021-9797(03)00694-5

    5. [5]

      In, M.; Bec, V.; Aguerre-Chariol, O.; Zana, R. Langmuir 2000, 16, 141.  doi: 10.1021/la990645g

    6. [6]

      In, M.; Aguerre-Chariol, O.; Zana, R. J. Phys. Chem. B 1999, 103, 7747.  doi: 10.1021/jp9919922

    7. [7]

      Danino, D.; Talmon, Y.; Levy, H.; Zana, R. Science 1995, 269, 1420.  doi: 10.1126/science.269.5229.1420

    8. [8]

      Esumi, K.; Taguma, K.; Koide, Y. Langmuir 1996, 12, 4039.  doi: 10.1021/la960230k

    9. [9]

      Kastner, U.; Zana, R. J. Colloid Interface Sci. 1999, 218, 468.  doi: 10.1006/jcis.1999.6438

    10. [10]

      Zana, R.; Levy, H.; Papoutsi, D.; Beinert, G. Langmuir 1995, 11, 3694.  doi: 10.1021/la00010a018

    11. [11]

      Menger, F. M.; Migulin, V. A. J. Org. Chem. 1999, 64, 8916.  doi: 10.1021/jo9912350

    12. [12]

      Menger, F. M.; Keiper, J. S. Angew. Chem. Int. Ed. 2000, 39, 1906.  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Laschewsky, A.; Wattebled, L.; Arotcarena, M.; Habib-Jiwan, J.; Rakotoaly, R. H. Langmuir 2005, 21, 7170.  doi: 10.1021/la050952o

    14. [14]

      Wattebled, L.; Laschewsky, A.; Moussa, A.; Habib-Jiwan, J. Langmuir 2006, 22, 2551.  doi: 10.1021/la052414h

    15. [15]

      Yoshimura, T.; Esumi, K. Langmuir 2003, 19, 3535.  doi: 10.1021/la026762k

    16. [16]

      Sumida, Y.; Oki, T.; Masuyama, A.; Maekawa, H.; Nishiura, M.; Kida, T.; Nakatsuji, Y.; Ikeda, I.; Nojima, M. Langmuir 1998, 14, 7450.  doi: 10.1021/la980814h

    17. [17]

      Hou, Y. B.; Han, Y. C.; Deng, M. L.; Xiang, J. F.; Wang, Y. L. Langmuir 2010, 26, 28.  doi: 10.1021/la903672r

    18. [18]

      Wu, C. X.; Hou, Y. B.; Deng, M. L.; Huang, X.; Xiang, J. F.; Liu, Y.; Li, Z. B.; Wang, Y. L. Langmuir 2010, 26, 7922.  doi: 10.1021/la9048067

    19. [19]

      Fan, Y. X.; Hou, Y. B.; Xiang, J. F.; Yu, D. F.; Wu, C. X.; Tian, M. Z.; Wang, Y. L. Langmuir 2011, 27, 10570.  doi: 10.1021/la202453c

    20. [20]

      Murguia, M. C.; Cabrera, M. I.; Guastavino, J. E.; Grau, R. J. Colloids Surf., A 2005, 262, 1.  doi: 10.1016/j.colsurfa.2005.03.018

    21. [21]

      Zhou, C. C.; Wang, F. Y.; Chen, H.; Li, M.; Qiao, F. L.; Liu, Z.; Hou, Y. B.; Wu, C. X.; Fan, Y. X.; Liu, L. B.; Wang, S.; Wang, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 4242.  doi: 10.1021/acsami.5b12688

    22. [22]

      Zhou, C. C.; Wang, D.; Cao, M. W.; Chen, Y.; Liu, Z.; Wu, C. X.; Xu, H.; Wang, S.; Wang, Y. L. ACS Appl Mater Interfaces 2016, 8, 30811.  doi: 10.1021/acsami.6b11667

    23. [23]

      Jurasin, D.; Habus, I.; Filipovic-Vincekovic, N. Colloids Surf., A 2010, 368, 119.  doi: 10.1016/j.colsurfa.2010.07.025

    24. [24]

      Qiao, F. L.; Wang, M. N.; Liu, Z.; Fan, Y. X.; Wang, Y. L. Chem. Asian J. 2016, 11, 2763.  doi: 10.1002/asia.201600432

    25. [25]

      Tian, M. Z.; Fan, Y. X.; Ji, G.; Wang, Y. L. Langmuir 2012, 28, 12005.  doi: 10.1021/la301762g

    26. [26]

      Wang, T. F.; Shang, Y. Z.; Peng, C. J.; Liu, H. L. Acta Chim. Sinica 2009, 67, 1159(in Chinese).
       

    27. [27]

      Sadeghi, R.; Shahabi, S. J. Chem. Thermodynamics 2011, 43, 1361.  doi: 10.1016/j.jct.2011.04.012

    28. [28]

      Xu, G. Y.; Gu, Y. H.; Zeng, L. R.; Zhu, H. P.; Mao, H. Z. Acta Phys. Chim. Sin. 1992, 8, 352(in Chinese).  doi: 10.3866/PKU.WHXB19920313

    29. [29]

      Zhu, B. Y.; Zhao, G. X. Fine Chemicals 1985, 2, 1(in Chinese).
       

    30. [30]

      Vora, S.; George, A.; Desai, H.; Bahadur, P. J. Surfactants Deterg. 1999, 2, 213.  doi: 10.1007/s11743-999-0076-5

    31. [31]

      Singh, O. G.; Ismail, K. J. Surfactants Deterg. 2008, 11, 89.  doi: 10.1007/s11743-007-1058-y

    32. [32]

      Azum, N.; Naqvi, A. Z.; Akram, M.; Kabir-ud-Din J. Colloid Interface Sci. 2008, 328, 429.  doi: 10.1016/j.jcis.2008.09.034

    33. [33]

      Xue, J. Y.; Liu, T. S.; Liu, Y. C. J. Dispersion Sci. Technol. 2012, 33, 599.  doi: 10.1080/01932691.2010.548279

    34. [34]

      Hayter, J. B.; Penfold, J. Colloid Polym. Sci. 1983, 261, 1022.  doi: 10.1007/BF01421709

    35. [35]

      Tanford, C. J. Phys. Chem. 1972, 76, 3020.  doi: 10.1021/j100665a018

    36. [36]

      Chen, Z. D.; Penfold, J.; Li, P. X.; Doutch, J.; Fan, Y. X.; Wang, Y. L. Soft Matter 2017, 13, 8980.  doi: 10.1039/C7SM02058A

    37. [37]

      Holland, P. M.; Rubingh, D. N. J. Phys. Chem. 1983, 87, 1984.  doi: 10.1021/j100234a030

    38. [38]

      Rosen, M. J.; Gao, T.; Nakatsuji, Y.; Masuyama, A. Colloids Surf., A 1994, 88, 1.  doi: 10.1016/0927-7757(94)80080-4

    39. [39]

      Liu, L.; Rosen, M. J. J. Colloid Interface Sci. 1996, 179, 454.  doi: 10.1006/jcis.1996.0237

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(3)
  • Abstract views(1482)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return