Citation: Guan Honghao, Chen Lei, Liu Lei. Oxidative C—H Alkynylation of Unactivated Acyclic Ethers[J]. Acta Chimica Sinica, ;2018, 76(6): 440-444. doi: 10.6023/A18030083 shu

Oxidative C—H Alkynylation of Unactivated Acyclic Ethers

  • Corresponding author: Liu Lei, leiliu@sdu.edu.cn
  • Received Date: 1 March 2018
    Available Online: 9 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21722204, 21472112) and Fok Ying Tung Education Foundation (No. 151035)the National Natural Science Foundation of China 21722204the National Natural Science Foundation of China 21472112Fok Ying Tung Education Foundation 151035

Figures(3)

  • C—C bond forming reactions through cross-dehydrogenative coupling (CDC) of two readily available C—H components under oxidative conditions have emerged as one of the most straightforward and economical approaches for increasing molecular complexity and functional group content with minimal waste generation. CDC reactions involving oxidative functionalization of sp3 C—H bonds of both cyclic and acyclic amines with diverse partners have been extensively explored. In sharp contrast, the CDC of corresponding ether substrates remains relatively underdeveloped. Current approaches predominantly focus on cyclic ethers as well as acyclic benzylic ethers. The CDC reaction of extensively existing unactivated acyclic ethers proved to be much more challenging, which might be ascribed to their inherent low reactivity. On the other hand, the existing protocols for unactivated ethers rely heavily on peroxide-mediated oxidation systems, which typically required high temperature and a large excess of ether substrates as the solvent. Accordingly, coupling partners that can be compatible with such harsh conditions are largely restricted to sp2 or sp3 C—H reagents with relatively low manipulation capability, such as arenes, heteroarenes, and 1, 3-dicarbonyl moieties. Alkynes represent common structural motifs spread across the fields of biology, chemistry, material science, and medicine, and act as global handles for diverse functionalities. Therefore, the development of a mild approach for CDC of unactivated acyclic ethers with terminal alkynes is highly desired. In 2014, our group developed a mild Ph3CCl/GaCl3 mediated oxidation system, allowing to achieve the oxidative C—H alkynylation of tetrahydrofuran with organoboranes. Herein, we reported the first CDC of unactivated acyclic ethers with terminal alkynes promoted by Ph3CCl/GaCl3. The reaction proceeded at room temperature in CH2Cl2, thus avoiding the employment of excess ether as the solvent. The typical procedure is as follows:a mixture of unactivated acyclic ether (2.0 mmol), terminal alkyne (0.1 mmol), Ph3CCl (0.1 mmol), and CuI (0.03 mmol) in CH2Cl2 at r.t. was added GaCl3 (0.1 mmol) in a glove box to afford the expected coupling products in moderate to good yields. The Ph3CCl/GaCl3 mediated oxidative C—H alkynylation of unactivated acyclic ethers with alkyl substituted alkynylboranes was further established to overcome the relative low efficiency for the CDC reaction involving alkyl substituted terminal alkynes.
  • 加载中
    1. [1]

      (a) Godula, K. ; Sames, D. Science 2006, 312, 67; (b) Davies, H. M. L. Angew. Chem., Int. Ed. 2006, 45, 6422; (c) Gutekunst, W. R. ; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976; (d) Giri, R. ; Shi, B. F. ; Engle, K. M. ; Maugel, N. ; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.

    2. [2]

    3. [3]

      (a) Wender, P. A. ; Verma, V. A. ; Paxton, T. J. ; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40; (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.

    4. [4]

      For cross-dehydrogenative coupling of amines, see: (a) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810; (b) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672; (c) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2005, 127, 6968; (d) Li, Z. ; Yu, R. ; Li, H. Angew. Chem., Int. Ed. 2008, 47, 7497; (e) Murahashi, S. I. ; Nakae, T. ; Terai, H. ; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005; (f) Yang, F. ; Li, J. ; Xie, J. ; Huang, Z. -Z. Org. Lett. 2010, 12, 5214; (g) Hari, D. P. ; König, B. Org. Lett. 2011, 13, 3852; (h) Boess, E. ; Sureshkumar, D. ; Sud, A. ; Wirtz, C. ; Farès, C. ; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106; (i) Richter, H. ; García Mancheño, O. Eur. J. Org. Chem. 2010, 4460; (j) Meng, Q. -Y. ; Zhong, J. -J. ; Liu, Q. ; Gao, X. -W. ; Zhang, H. -H. ; Lei, T. ; Li, Z. -J. ; Feng, K. ; Chen, B. ; Tung, C. -H. ; Wu, L. -Z. J. Am. Chem. Soc. 2013, 135, 19052; (k) Liu, X. ; Sun, B. ; Xie, Z. ; Qin, X. ; Liu, L. ; Lou, H. J. Org. Chem. 2013, 78, 3104; (l) Xie, Z. ; Liu, L. ; Chen, W. ; Zheng, H. ; Xu, Q. ; Yuan, H. ; Lou, H. Angew. Chem., Int. Ed. 2014, 53, 3904; (m) Wu, C. -J. ; Zhong, J. -J. ; Meng, Q. -Y. ; Lei, T. ; Gao, X. -W. ; Tung, C. -H. ; Wu, L. -Z. Org. Lett. 2015, 17, 884; (n) Long, H. ; Wang, G. ; Lu, R. ; Xu, M. ; Zhang, K. ; Qi, S. ; He, Y. ; Bu, Y. ; Liu, L. Org. Lett. 2017, 19, 2146.

    5. [5]

      For asymmetric cross-dehydrogenative coupling of amines, see: (a) Zhang, J. ; Tiwari, B. ; Xing, C. ; Chen, X. ; Chi, Y. R. Angew. Chem., Int. Ed. 2012, 51, 3649; (b) Zhang, G. ; Zhang, Y. ; Wang, R. ; Angew. Chem., Int. Ed. 2011, 50, 10429; (c) Zhang, G. ; Ma, Y. ; Wang, S. ; Kong, W. ; Wang, R. Chem. Sci. 2013, 4, 2645; (d) Neel, A. J. ; Hehn, J. P. ; Tripet, P. F. ; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044; (e) Liu, X. ; Sun, S. ; Meng, Z. ; Lou, H. ; Liu, L. Org. Lett. 2015, 17, 2396; (f) Xie, Z. ; Liu, X. ; Liu, L. Org. Lett. 2016, 18, 2982; (g) Xie, Z. ; Zan, X. ; Sun, S. ; Pan, X. ; Liu, L. Org. Lett. 2016, 18, 3944; (h) Yang, Q. ; Zhang, L. ; Ye, C. ; Luo, S. ; Wu, L. -Z. ; Tung, C. -H. Angew. Chem., Int. Ed. 2017, 56, 3694; (i) Fu, N. ; Li, L. ; Yang, Q. ; Luo, S. Org. Lett. 2017, 19, 2122.

    6. [6]

      For cross-dehydrogenative coupling of cyclic benzylic ethers, see: (a) Zhang, Y. H. ; Li, C. J. J. Am. Chem. Soc. 2006, 128, 4242; (b) Zhang, Y. H. ; Li, C. J. Angew. Chem., Int. Ed. 2006, 45, 1949; (c) Ghobrial, M. ; Harhammer, K. ; Mihovilovic, M. D. ; Schnürch, M. Chem. Commun. 2010, 46, 8836; (d) Correia, C. A. ; Li, C. J. Heterocycles 2010, 82, 555; (e) Richter, H. ; Rohlmann, R. ; García Mancheño, O. Chem. Eur. J. 2011, 17, 11622; (f) Xiang, S. -K. ; Zhang, B. ; Zhang, L. -H. ; Cui, Y. ; Jiao, N. Sci. China Chem. 2012, 55, 50; (g) Park, S. J. ; Price, J. R. ; Todd, M. H. J. Org. Chem. 2012, 77, 949; (h) Liu, X. ; Sun, B. ; Xie, Z. ; Qin, X. ; Liu, L. ; Lou, H. J. Org. Chem. 2013, 78, 3104; (i) Chen, W. ; Xie, Z. ; Zheng, H. ; Lou, H. ; Liu, L. Org. Lett. 2014, 16, 5988.

    7. [7]

      Asymmetric cross-dehydrogenative coupling of cyclic benzylic ethers, see: Meng, Z. ; Sun, S. ; Yuan, H. ; Lou, H. ; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 543.

    8. [8]

      For cross-dehydrogenative coupling of unactivated cyclic ethers, see: (a) Wu, Z. ; Pi, C. ; Cui, X. ; Bai, J. ; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971; (b) Huang, X. -F. ; Zhu, Z. -Q. ; Huang, Z. -Z. Tetrahedron 2013, 69, 8579; (c) Liu, D. ; Liu, C. ; Li, H. ; Lei, A. Chem. Commun. 2014, 50, 3623; (d) Wei, W. -T. ; Song, R. -J. ; Li, J. -H. Adv. Synth. Catal. 2014, 356, 1703; (e) Jin, J. ; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565; (f) Jin, L. ; Feng, J. ; Lu, G. ; Cai, C. Adv. Synth. Catal. 2015, 357, 2105; (g) Niu, B. ; Zhao, W. ; Ding, Y. ; Bian, Z. ; Pittman Jr. C. U. ; Zhou, A. ; Ge, H. J. Org. Chem. 2015, 80, 7251; (h) Li, Q. ; Hu, W. ; Hu, R. ; Lu, H. ; Li, G. Org. Lett. 2017, 19, 4676; (i) Liu, S. ; Liu, A. ; Zhang, Y. ; Wang, W. Chem. Sci. 2017, 8, 4044; (j) Liu, D. ; Liu, C. ; Lei A. Angew. Chem., Int. Ed. 2013, 52, 4453; (k) Yang, Q. ; Choy, P. Y. ; Wu, Y. ; Fan, B. ; Kwong, F. Y. Org. Biomol. Chem. 2016, 14, 2608; (l) Zhang, L. ; Yi, H. ; Wang, J. ; Lei, A. J. Org. Chem. 2017, 82, 10704; (m) Wu, J. ; Zhou, Y. ; Zhou, Y. ; Chiang, C. -W. ; Lei, A. ACS Catal. 2017, 7, 8320; (n) Xie, Z. ; Cai, Y. ; Hu, H. ; Lin, C. ; Jiang, J. ; Chen, Z. ; Wang, L. ; Pan, Y. Org. Lett. 2013, 15, 4600; (o) Zhou, L. ; Tang, S. ; Qi, X. ; Lin, C. ; Liu, K. ; Liu, C. ; Lan, Y. ; Lei, A. Org. Lett. 2014, 16, 3404; (p) Tang, S. ; Wang, P. ; Li, H. ; Lei, A. Nat. Commun. 2016, 7, 11676.

    9. [9]

      For cross-dehydrogenative coupling of acyclic benzylic ethers, see: (a) Liu, L. ; Floreancig, P. E. Org. Lett. 2009, 11, 3152; (b) Xie, Y. ; Yu, M. ; Zhang, Y. Synthesis 2011, 17, 2803.

    10. [10]

      Diederich, F. ; Stang, P. J. ; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology and Material Science, Wiley-VCH, Weinheim, 2005.

    11. [11]

      Wan, M.; Meng, Z.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 13845.  doi: 10.1002/anie.201407083

    12. [12]

      Zhang, Q.; Lv, J.; Luo, S. Acta Chim. Sinica 2016, 74, 61(in Chinese).  doi: 10.3866/PKU.WHXB201511101
       

    13. [13]

      Usugi, S.-i.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2002, 75, 2687.  doi: 10.1246/bcsj.75.2687

    14. [14]

      In-situ generated carbocation oxidation system shows better reactivity than pre-prepared one. At present, the origin of this difference in activity is still unknown.

  • 加载中
    1. [1]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    7. [7]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    8. [8]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(5)
  • Abstract views(1665)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return