Citation: Guan Honghao, Chen Lei, Liu Lei. Oxidative C—H Alkynylation of Unactivated Acyclic Ethers[J]. Acta Chimica Sinica, ;2018, 76(6): 440-444. doi: 10.6023/A18030083 shu

Oxidative C—H Alkynylation of Unactivated Acyclic Ethers

  • Corresponding author: Liu Lei, leiliu@sdu.edu.cn
  • Received Date: 1 March 2018
    Available Online: 9 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21722204, 21472112) and Fok Ying Tung Education Foundation (No. 151035)the National Natural Science Foundation of China 21722204the National Natural Science Foundation of China 21472112Fok Ying Tung Education Foundation 151035

Figures(3)

  • C—C bond forming reactions through cross-dehydrogenative coupling (CDC) of two readily available C—H components under oxidative conditions have emerged as one of the most straightforward and economical approaches for increasing molecular complexity and functional group content with minimal waste generation. CDC reactions involving oxidative functionalization of sp3 C—H bonds of both cyclic and acyclic amines with diverse partners have been extensively explored. In sharp contrast, the CDC of corresponding ether substrates remains relatively underdeveloped. Current approaches predominantly focus on cyclic ethers as well as acyclic benzylic ethers. The CDC reaction of extensively existing unactivated acyclic ethers proved to be much more challenging, which might be ascribed to their inherent low reactivity. On the other hand, the existing protocols for unactivated ethers rely heavily on peroxide-mediated oxidation systems, which typically required high temperature and a large excess of ether substrates as the solvent. Accordingly, coupling partners that can be compatible with such harsh conditions are largely restricted to sp2 or sp3 C—H reagents with relatively low manipulation capability, such as arenes, heteroarenes, and 1, 3-dicarbonyl moieties. Alkynes represent common structural motifs spread across the fields of biology, chemistry, material science, and medicine, and act as global handles for diverse functionalities. Therefore, the development of a mild approach for CDC of unactivated acyclic ethers with terminal alkynes is highly desired. In 2014, our group developed a mild Ph3CCl/GaCl3 mediated oxidation system, allowing to achieve the oxidative C—H alkynylation of tetrahydrofuran with organoboranes. Herein, we reported the first CDC of unactivated acyclic ethers with terminal alkynes promoted by Ph3CCl/GaCl3. The reaction proceeded at room temperature in CH2Cl2, thus avoiding the employment of excess ether as the solvent. The typical procedure is as follows:a mixture of unactivated acyclic ether (2.0 mmol), terminal alkyne (0.1 mmol), Ph3CCl (0.1 mmol), and CuI (0.03 mmol) in CH2Cl2 at r.t. was added GaCl3 (0.1 mmol) in a glove box to afford the expected coupling products in moderate to good yields. The Ph3CCl/GaCl3 mediated oxidative C—H alkynylation of unactivated acyclic ethers with alkyl substituted alkynylboranes was further established to overcome the relative low efficiency for the CDC reaction involving alkyl substituted terminal alkynes.
  • 加载中
    1. [1]

      (a) Godula, K. ; Sames, D. Science 2006, 312, 67; (b) Davies, H. M. L. Angew. Chem., Int. Ed. 2006, 45, 6422; (c) Gutekunst, W. R. ; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976; (d) Giri, R. ; Shi, B. F. ; Engle, K. M. ; Maugel, N. ; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.

    2. [2]

    3. [3]

      (a) Wender, P. A. ; Verma, V. A. ; Paxton, T. J. ; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40; (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.

    4. [4]

      For cross-dehydrogenative coupling of amines, see: (a) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810; (b) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672; (c) Li, Z. ; Li, C. J. J. Am. Chem. Soc. 2005, 127, 6968; (d) Li, Z. ; Yu, R. ; Li, H. Angew. Chem., Int. Ed. 2008, 47, 7497; (e) Murahashi, S. I. ; Nakae, T. ; Terai, H. ; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005; (f) Yang, F. ; Li, J. ; Xie, J. ; Huang, Z. -Z. Org. Lett. 2010, 12, 5214; (g) Hari, D. P. ; König, B. Org. Lett. 2011, 13, 3852; (h) Boess, E. ; Sureshkumar, D. ; Sud, A. ; Wirtz, C. ; Farès, C. ; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106; (i) Richter, H. ; García Mancheño, O. Eur. J. Org. Chem. 2010, 4460; (j) Meng, Q. -Y. ; Zhong, J. -J. ; Liu, Q. ; Gao, X. -W. ; Zhang, H. -H. ; Lei, T. ; Li, Z. -J. ; Feng, K. ; Chen, B. ; Tung, C. -H. ; Wu, L. -Z. J. Am. Chem. Soc. 2013, 135, 19052; (k) Liu, X. ; Sun, B. ; Xie, Z. ; Qin, X. ; Liu, L. ; Lou, H. J. Org. Chem. 2013, 78, 3104; (l) Xie, Z. ; Liu, L. ; Chen, W. ; Zheng, H. ; Xu, Q. ; Yuan, H. ; Lou, H. Angew. Chem., Int. Ed. 2014, 53, 3904; (m) Wu, C. -J. ; Zhong, J. -J. ; Meng, Q. -Y. ; Lei, T. ; Gao, X. -W. ; Tung, C. -H. ; Wu, L. -Z. Org. Lett. 2015, 17, 884; (n) Long, H. ; Wang, G. ; Lu, R. ; Xu, M. ; Zhang, K. ; Qi, S. ; He, Y. ; Bu, Y. ; Liu, L. Org. Lett. 2017, 19, 2146.

    5. [5]

      For asymmetric cross-dehydrogenative coupling of amines, see: (a) Zhang, J. ; Tiwari, B. ; Xing, C. ; Chen, X. ; Chi, Y. R. Angew. Chem., Int. Ed. 2012, 51, 3649; (b) Zhang, G. ; Zhang, Y. ; Wang, R. ; Angew. Chem., Int. Ed. 2011, 50, 10429; (c) Zhang, G. ; Ma, Y. ; Wang, S. ; Kong, W. ; Wang, R. Chem. Sci. 2013, 4, 2645; (d) Neel, A. J. ; Hehn, J. P. ; Tripet, P. F. ; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044; (e) Liu, X. ; Sun, S. ; Meng, Z. ; Lou, H. ; Liu, L. Org. Lett. 2015, 17, 2396; (f) Xie, Z. ; Liu, X. ; Liu, L. Org. Lett. 2016, 18, 2982; (g) Xie, Z. ; Zan, X. ; Sun, S. ; Pan, X. ; Liu, L. Org. Lett. 2016, 18, 3944; (h) Yang, Q. ; Zhang, L. ; Ye, C. ; Luo, S. ; Wu, L. -Z. ; Tung, C. -H. Angew. Chem., Int. Ed. 2017, 56, 3694; (i) Fu, N. ; Li, L. ; Yang, Q. ; Luo, S. Org. Lett. 2017, 19, 2122.

    6. [6]

      For cross-dehydrogenative coupling of cyclic benzylic ethers, see: (a) Zhang, Y. H. ; Li, C. J. J. Am. Chem. Soc. 2006, 128, 4242; (b) Zhang, Y. H. ; Li, C. J. Angew. Chem., Int. Ed. 2006, 45, 1949; (c) Ghobrial, M. ; Harhammer, K. ; Mihovilovic, M. D. ; Schnürch, M. Chem. Commun. 2010, 46, 8836; (d) Correia, C. A. ; Li, C. J. Heterocycles 2010, 82, 555; (e) Richter, H. ; Rohlmann, R. ; García Mancheño, O. Chem. Eur. J. 2011, 17, 11622; (f) Xiang, S. -K. ; Zhang, B. ; Zhang, L. -H. ; Cui, Y. ; Jiao, N. Sci. China Chem. 2012, 55, 50; (g) Park, S. J. ; Price, J. R. ; Todd, M. H. J. Org. Chem. 2012, 77, 949; (h) Liu, X. ; Sun, B. ; Xie, Z. ; Qin, X. ; Liu, L. ; Lou, H. J. Org. Chem. 2013, 78, 3104; (i) Chen, W. ; Xie, Z. ; Zheng, H. ; Lou, H. ; Liu, L. Org. Lett. 2014, 16, 5988.

    7. [7]

      Asymmetric cross-dehydrogenative coupling of cyclic benzylic ethers, see: Meng, Z. ; Sun, S. ; Yuan, H. ; Lou, H. ; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 543.

    8. [8]

      For cross-dehydrogenative coupling of unactivated cyclic ethers, see: (a) Wu, Z. ; Pi, C. ; Cui, X. ; Bai, J. ; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971; (b) Huang, X. -F. ; Zhu, Z. -Q. ; Huang, Z. -Z. Tetrahedron 2013, 69, 8579; (c) Liu, D. ; Liu, C. ; Li, H. ; Lei, A. Chem. Commun. 2014, 50, 3623; (d) Wei, W. -T. ; Song, R. -J. ; Li, J. -H. Adv. Synth. Catal. 2014, 356, 1703; (e) Jin, J. ; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565; (f) Jin, L. ; Feng, J. ; Lu, G. ; Cai, C. Adv. Synth. Catal. 2015, 357, 2105; (g) Niu, B. ; Zhao, W. ; Ding, Y. ; Bian, Z. ; Pittman Jr. C. U. ; Zhou, A. ; Ge, H. J. Org. Chem. 2015, 80, 7251; (h) Li, Q. ; Hu, W. ; Hu, R. ; Lu, H. ; Li, G. Org. Lett. 2017, 19, 4676; (i) Liu, S. ; Liu, A. ; Zhang, Y. ; Wang, W. Chem. Sci. 2017, 8, 4044; (j) Liu, D. ; Liu, C. ; Lei A. Angew. Chem., Int. Ed. 2013, 52, 4453; (k) Yang, Q. ; Choy, P. Y. ; Wu, Y. ; Fan, B. ; Kwong, F. Y. Org. Biomol. Chem. 2016, 14, 2608; (l) Zhang, L. ; Yi, H. ; Wang, J. ; Lei, A. J. Org. Chem. 2017, 82, 10704; (m) Wu, J. ; Zhou, Y. ; Zhou, Y. ; Chiang, C. -W. ; Lei, A. ACS Catal. 2017, 7, 8320; (n) Xie, Z. ; Cai, Y. ; Hu, H. ; Lin, C. ; Jiang, J. ; Chen, Z. ; Wang, L. ; Pan, Y. Org. Lett. 2013, 15, 4600; (o) Zhou, L. ; Tang, S. ; Qi, X. ; Lin, C. ; Liu, K. ; Liu, C. ; Lan, Y. ; Lei, A. Org. Lett. 2014, 16, 3404; (p) Tang, S. ; Wang, P. ; Li, H. ; Lei, A. Nat. Commun. 2016, 7, 11676.

    9. [9]

      For cross-dehydrogenative coupling of acyclic benzylic ethers, see: (a) Liu, L. ; Floreancig, P. E. Org. Lett. 2009, 11, 3152; (b) Xie, Y. ; Yu, M. ; Zhang, Y. Synthesis 2011, 17, 2803.

    10. [10]

      Diederich, F. ; Stang, P. J. ; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology and Material Science, Wiley-VCH, Weinheim, 2005.

    11. [11]

      Wan, M.; Meng, Z.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 13845.  doi: 10.1002/anie.201407083

    12. [12]

      Zhang, Q.; Lv, J.; Luo, S. Acta Chim. Sinica 2016, 74, 61(in Chinese).  doi: 10.3866/PKU.WHXB201511101
       

    13. [13]

      Usugi, S.-i.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2002, 75, 2687.  doi: 10.1246/bcsj.75.2687

    14. [14]

      In-situ generated carbocation oxidation system shows better reactivity than pre-prepared one. At present, the origin of this difference in activity is still unknown.

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(5)
  • Abstract views(1499)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return