Citation: Yin Xinchi, Jiang You, Chu Shiying, Weng Guofeng, Fang Xiang, Pan Yuanjiang. Copper-Catalyzed Decarboxylative Iodination Reaction in the Gas Phase[J]. Acta Chimica Sinica, ;2018, 76(6): 436-439. doi: 10.6023/A18020080 shu

Copper-Catalyzed Decarboxylative Iodination Reaction in the Gas Phase

  • Corresponding author: Fang Xiang, fangxiang@nim.ac.cn Pan Yuanjiang, panyuanjiang@zju.edu.cn
  • Received Date: 26 February 2018
    Available Online: 28 June 2018

    Fund Project: the National Natural Science Foundation of China 21532005the National Key Basic Research Program of China 2016YEF0200503the National Scientific Instrumentation Grant Program of China 2011YQ09000501Project supported by the National Natural Science Foundation of China (No. 21532005), the National Key Basic Research Program of China (No. 2016YEF0200503), and the National Scientific Instrumentation Grant Program of China (Nos. 2012YQ12004907, 2011YQ09000501)the National Scientific Instrumentation Grant Program of China 2012YQ12004907

Figures(5)

  • Organocopper complexes play the key role in Cu-catalyzed organic reaction. This manuscript offered a method to synthesize ligand-ligated organocopper complexes. Copper acetate was used as the catalyst and 2-(aminomethyl)pyridine (2-AMP) as the ligand to react with benzoic acid to generate the organocopper complex. This complex (A1) was easily transferred from solution to gas phase via electrospray ionization mass spectrometry (ESI-MS). Firstly, the collision-induced dissociation (CID) experiment of complex ion A1 was carried out in the ion-trap analyzer to investigate the gas-phase reactivity of it (the single isotope ion with 63Cu was isolated and used in MS/MS and next ion-molecule reaction). The decarboxylation reaction was taken place upon CID to generate the fragment ion B1. Next, the ion-molecule reaction (I-MR) of B1 was introduced after ion B1 was isolated, while allyl iodide was used as the neutral reagent. The iodine group transfer product ion C1 was obtained from the ion-molecule reation. The valence state of the central metal Cu changed from +2 in B1 to +3 in C1 during this process. Then ion A3 was dissociated to form the Cu(I) complex D1 with a neutral loss of iodobenzene upon CID. During these steps, the reagent benzoic acid reacted with allyl iodide in the gas phase with Cu2+ as catalyst and 2-AMP as ligand to produce iodobenzene, thus the copper-catalyzed decarboxylative iodination reaction was created in the gas phase. From the result, the mechanism of decarboxylative iodination reaction was speculated and carefully studied. Meanwhile, this reaction was also suitable for different carboxylic acids and bidentate nitrogen ligands. The aim of this manuscript is to study the reactive copper complexes in isolated environment and solvent free-condition. The gas phase mass spectrometric results supported the proposed mechanism. This method not only detected the gas-phase reactivities of a series of organocopper complexes, but also provided significant information of the mechanism of copper-catalyzed decarboxylative iodination reaction in the condensed phase.
  • 加载中
    1. [1]

      Shepard, A. F.; Winslow, N. R.; Johnson, J. R. J. Am. Chem. Soc. 1930, 52, 2083.  doi: 10.1021/ja01368a057

    2. [2]

      Hubacher, M. H. Anal. Chem. 1949, 21, 945.  doi: 10.1021/ac60032a017

    3. [3]

      (a) Chamchaang, W. ; Chantarasiri, N. ; Chaona, S. ; Thebtaranonth, C. ; Thebtaranonth, Y. Tetrahedron 1984, 40, 1727. (b) Lu, P. F. ; Sanchez, C. ; Cornella, J. ; Larrosa, I. Org. Lett. 2009, 11, 5710. (c) Cornella, J. ; Sanchez, C. ; Banawa, D. ; Larrosa, I. Chem. Commun. 2009, 7176.

    4. [4]

      (a) Li, Z. ; Zheng, J. ; Hu, W. ; Li, J. ; Wu, W. ; Jiang, H. Org. Chem. Front. 2017, 4, 1363. (b) Yuan, J. W. ; Yang, L. R. ; Mao, P. ; Qu, L. B. Org. Chem. Front. 2017, 4, 545.

    5. [5]

      Guan, B; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese).
       

    6. [6]

      (a) Frisch, A. C. ; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 674. (b) Kambe, N. ; Iwasaki, T. ; Terao, J. Chem. Soc. Rev. 2011, 40, 4937. (c) Tasker, S. Z. ; Standley, E. A. ; Jamison, T. F. Nature 2014, 509, 299.

    7. [7]

      Eisch, J. J. Organometallics 2002, 21, 5439.  doi: 10.1021/om0109408

    8. [8]

      (a) Goossen, L. J. ; Collet, F. ; Goossen, K. Isr. J. Chem. 2010, 50, 617. (b) Rodriguez, N. ; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030. (c) Shang, R. ; Liu, L. Sci. China Chem. 2011, 54, 1670. (d) Cornella, J. ; Larrosa, I. Synthesis 2012, 653. (e) Dzik, W. I. ; Lange, P. P. ; Goossen, L. J. Chem. Sci. 2012, 3, 2671.

    9. [9]

      (a) Yamanaka, M. ; Kato, S. ; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 6287. (b) Yamanaka, M. ; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 4697. (c) Candish, L. ; Standley, E. A. ; Gómez-Suárez, A. ; Mukherjee, S. ; Glorius, F. Chem. Eur. J. 2016, 22, 9971. (d) Ni, S. ; Sha, W. ; Zhang, L. ; Xie, C. ; Mei, H. ; Han, J. ; Pan, Y. Org. Lett. 2016, 18, 712. (e) Perry, G. J. P. ; Quibell, J. M. ; Panigrahi, A. ; Larrosa, I. J. Am. Chem. Soc. 2017, 139, 11527.

    10. [10]

      Nakamura, E.; Mori, S. Angew. Chem. Int. Ed. 2000, 39, 3750.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      (a) Bertz, S. H. ; Cope, S. ; Murphy, M. ; Ogle, C. A. ; Taylor, B. J. J. Am. Chem. Soc. 2007, 129, 7208. (b) Hu, H. ; Snyder, J. P. J. Am. Chem. Soc. 2007, 129, 7210.

    12. [12]

      (a) Schröder, D. Acc. Chem. Res. 2012, 45, 1521. (b) Coelho, F. ; Eberlin, M. N. Angew. Chem. Int. Ed. 2011, 50, 5261. (c) Gronert, S. Chem. Rev. 2001, 101, 329. (d) Gronert, S. Mass Spectrom. Rev. 2005, 24, 100. (e) Rijs, N. ; Khairallah, G. N. ; Waters, T. O'Hair, R. A. J. J. Am. Chem. Soc. 2008, 130, 1069.

    13. [13]

      (a) Meyer, M. M. ; Khairallah, G. N. ; Kass, S. R. ; O'Hair, R. A. J. Angew. Chem. Int. Ed. 2009, 48, 2934. (b) Schlangen, M. ; Schröder, D. ; Schwarz, H. Angew. Chem. Int. Ed. 2007, 46, 1641. (c) Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096.

    14. [14]

      (a) Rijs, N. ; Yates, B. F. ; O'Hair, R. A. J. Chem. Eur. J. 2010, 16, 2674. (b) Rijs, N. ; Yoshikai, N. ; Nakamura, E. ; O'Hair, R. A. J. J. Am. Chem. Soc. 2012, 134, 2569. (c) Rijs, N. ; O'Hair, R. A. J. Organometallics 2012, 31, 8012. (d) Sharif, H. A. ; Vikse, K. L. ; Khairallah, G. N. ; O'Hair, R. A. J. Organometallics 2013, 32, 5416. (e) Rijs, N. ; González-Navarrete, P. ; Schlangen, M. ; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 3125. (f) Geng, C. ; Li, J. ; Weiske, T. ; Schlangen, M. ; Shaik, S. ; Schwarz, H. J. Am. Chem. Soc. 2017, 139, 1684.

    15. [15]

      Zhang, X.; Bai, X.; Fang, L.; Jiang, K.; Li, Z. J. Am. Soc. Mass Spectrom. 2016, 27, 940.  doi: 10.1007/s13361-016-1339-7

    16. [16]

      Jiang, X.; Huang, H.; Chai, Y.; Lohr, T. L.; Yu, S.; Lai, W.; Pan, Y.; Delferro, M.; Marks, T. J. Nat. Chem. 2017, 9, 188.  doi: 10.1038/nchem.2637

    17. [17]

      Chai, Y.; Shen, S.; Weng, G.; Pan, Y. Chem. Commun. 2014, 50, 11668.  doi: 10.1039/C4CC04168B

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(14)
  • Abstract views(1478)
  • HTML views(285)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return