Citation: Du Junyi, Xia Chungu, Sun Wei. Progress in Mononuclear Iron-Oxygen and Manganese-Oxygen Adducts[J]. Acta Chimica Sinica, ;2018, 76(5): 329-346. doi: 10.6023/A18020076 shu

Progress in Mononuclear Iron-Oxygen and Manganese-Oxygen Adducts

  • Corresponding author: Sun Wei, wsun@licp.cas.cn
  • Received Date: 22 February 2018
    Available Online: 30 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21473226, 21773273), and the Natural Science Foundation of Jiangsu Province (No. BK20161261)the Natural Science Foundation of Jiangsu Province BK20161261the National Natural Science Foundation of China 21773273the National Natural Science Foundation of China 21473226

Figures(36)

  • In biological system, metalloenzymes utilize dioxygen for metabolically oxidative transformations, in which organic compounds can be oxidized efficiently. Therefore, it is of great interest to unravel the enzymatic mechanism in the development of clean and efficient catalytic oxidation reactions. In the dioxygen activation by metalloenzymes, a series of metal-oxygen adducts, such as metal-superoxo, -peroxo, -hydroperoxo, -oxo and -hydroxo species, are formed as the active intermediates. In general, these intermeditates are difficult to capture for further characterizations and investigations because of their unstability and the complicated enzymatic systems. Alternatively, the enzyme models, designed and synthesized by mimicking the active center and coordination environment of metalloenzymes, can be easily acquired and manipulated for further structure and reactivity studies. In this review, we briefly illustrate the active sites of metalloenzymes in biology and focus on the recent achievements in mononuclear iron-oxygen and manganese-oxygen adducts in biomimetic studies.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Wang, B.; Li, D. Chin. J. Org. Chem. 2009, 29, 658.
       

    5. [5]

      Ferraro, D. J.; Gakhar, L.; Ramaswamy, S. Biochem. Biophys. Res. Commun. 2005, 338, 175.  doi: 10.1016/j.bbrc.2005.08.222

    6. [6]

      Hayward, S.; Cilliers, T.; Swart, P. Compr. Rev. Food Sci. Food Saf. 2017, 16, 199.  doi: 10.1111/crf3.2017.16.issue-1

    7. [7]

      Glorieux, C.; Calderon, P. B. Biol. Chem. 2017, 398, 1095.
       

    8. [8]

      Kovaleva, E. G.; Neibergall, M. B.; Chakrabarty, S.; Lipscomb, J. D. Acc. Chem. Res. 2007, 40, 475.  doi: 10.1021/ar700052v

    9. [9]

      (a) Nam, W. Acc. Chem. Res. 2015, 48, 2415. (b) Ray, K. ; Pfaff, F. F. ; Wang, B. ; Nam, W. J. Am. Chem. Soc. 2014, 136, 13942.

    10. [10]

      Price, J. C.; Barr, E. W.; Tirupati, B.; Bollinger, J. M., Jr.; Krebs, C. Biochemistry 2003, 42, 7497.  doi: 10.1021/bi030011f

    11. [11]

      Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski, M. R.; Stubna, A.; Münck, E.; Nam, W.; Que, L., Jr. Science 2003, 299, 1037.  doi: 10.1126/science.299.5609.1037

    12. [12]

      Rice, D. B.; Massie, A. A.; Jackson, T. A. Acc. Chem. Res. 2017, 50, 2706.  doi: 10.1021/acs.accounts.7b00343

    13. [13]

      (a) Bugg, T. D. H. ; Ramaswamy, S. Curr. Opin. Chem. Biol. 2008, 12, 134. (b) Poulos, T. L. Chem. Rev. 2014, 114, 3919. (c) Solomon, E. I. ; Heppner, D. E. ; Johnston, E. M. ; Ginsbach, J. W. ; Cirera, J. ; Qayyum, M. ; Kieber-Emmons, M. T. ; Kjaergaard, C. H. ; Hadt, R. G. ; Tian, L. Chem. Rev. 2014, 114, 3659.

    14. [14]

      (a) Crawford, J. A. ; Li, W. ; Pierce, B. S. Biochemistry 2011, 50, 10241. (b) Kunishita, A. ; Ertem, M. Z. ; Okubo, Y. ; Tano, T. ; Sugimoto, H. ; Ohkubo, K. ; Fujieda, N. ; Fukuzumi, S. ; Cramer, C. J. ; Itoh, S. Inorg. Chem. 2012, 51, 9465. (c) Xing, G. ; Hoffart, L. M. ; Diao, Y. ; Prabhu, K. S. ; Arner, R. J. ; Reddy, C. C. ; Krebs, C. ; Bollinger, J. M., Jr. Biochemistry 2006, 45, 5393. (d) Xing, G. ; Barr, E. W. ; Diao, Y. ; Hoffart, L. M. ; Prabhu, K. S. ; Arner, R. J. ; Reddy, C. C. ; Krebs, C. ; Bollinger, J. M., Jr. Biochemistry 2006, 45, 5402. (e) Kim, S. H. ; Xing, G. ; Bollinger, J. M., Jr. ; Krebs, C. ; Hoffman, B. M. J. Am. Chem. Soc. 2006, 128, 10374. (f) Roach, P. L. ; Clifton, I. J. ; Hensgens, C. M. ; Shibata, N. ; Schofield, C. J. ; Hajdu, J. ; Baldwin, J. E. Nature 1997, 387, 827. (g) Cicchillo, R. M. ; Zhang, H. ; Blodgett, J. A. ; Whitteck, J. T. ; Li, G. ; Nair, S. K. ; van der Donk, W. A. ; Metcalf, W. W. Nature 2009, 459, 871. (h) Kovaleva, E. G. ; Lipscomb, J. D. Science 2007, 316, 453.

    15. [15]

      Fielding, A. J.; Kovaleva, E. G.; Farquhar, E. R.; Lipscomb, J. D.; Que, L., Jr. J. Biol. Inorg. Chem. 2011, 16, 341.  doi: 10.1007/s00775-010-0732-0

    16. [16]

      Lee, Y.-M.; Hong, S.; Morimoto, Y.; Shin, W.; Fukuzumi, S.; Nam, W. J. Am. Chem. Soc. 2010, 132, 10668.  doi: 10.1021/ja103903c

    17. [17]

      Chiang, C.-W.; Kleespies, S. T.; Stout, H. D.; Meier, K. K.; Li, P.-Y.; Bominaar, E. L.; Que, L., Jr.; Münck, E.; Lee, W.-Z. J. Am. Chem. Soc. 2014, 136, 10846.  doi: 10.1021/ja504410s

    18. [18]

      Mbughuni, M. M.; Chakrabarti, M.; Hayden, J. A.; Bominaar, E. L.; Hendrich, M. P.; Münck, E.; Lipscomb, J. D. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16788.  doi: 10.1073/pnas.1010015107

    19. [19]

      Bollinger, J. M., Jr.; Krebs, C. Curr. Opin. Chem. Biol. 2007, 11, 151.  doi: 10.1016/j.cbpa.2007.02.037

    20. [20]

      Stout, H. D.; Kleespies, S. T.; Chiang, C.-W.; Lee, W.-Z.; Que, L., Jr.; Münck, E.; Bominaar, E. L. Inorg. Chem. 2016, 55, 5215.  doi: 10.1021/acs.inorgchem.6b00134

    21. [21]

      Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W. Nat. Commun. 2014, 5, 5440.  doi: 10.1038/ncomms6440

    22. [22]

      Oddon, F.; Chiba, Y.; Nakazawa, J.; Ohta, T.; Ogura, T.; Hikichi, S. Angew. Chem., Int. Ed. 2015, 54, 7336.  doi: 10.1002/anie.v54.25

    23. [23]

      Sahu, S.; Goldberg, D. P. J. Am. Chem. Soc. 2016, 138, 11410.  doi: 10.1021/jacs.6b05251

    24. [24]

      Karlsson, A.; Parales, J. V.; Parales, R. E.; Gibson, D. T.; Eklund, H.; Ramaswamy, S. Science 2003, 299, 1039.  doi: 10.1126/science.1078020

    25. [25]

      (a) Canta, M. ; Rodríguez, M. ; Costas, M. Top. Curr. Chem. 2016, 372, 27. (b) Bryliakov, K. P. ; Talsi, E. P. Coord. Chem. Rev. 2014, 276, 73.

    26. [26]

      Gibson, D. T.; Parales, R. E. Curr. Opin. Biotechnol. 2000, 11, 236.  doi: 10.1016/S0958-1669(00)00090-2

    27. [27]

      (a) Costas, M. ; Mehn, M. P. ; Jensen, M. P. ; Que, L., Jr. Chem. Rev. 2004, 104, 939. (b) Bruijnincx, P. C. A. ; van Koten, G. ; Klein Gebbink, R. J. M. Chem. Soc. Rev. 2008, 37, 2716. (c) Barry, S. M. ; Challis, G. L. ACS Catal. 2013, 3, 2362.

    28. [28]

      (a) Wolfe, M. D. ; Lipscomb, J. D. J. Biol. Chem. 2003, 278, 829. (b) Wackett, L. P. ; Kwart, L. D. ; Gibson, D. T. Biochemistry 1988, 27, 1360.

    29. [29]

      Annaraj, J.; Suh, Y.; Seo, M. S.; Kim, S. O.; Nam, W. Chem. Commun. 2005, 4529.
       

    30. [30]

      Cho, J.; Jeon, S.; Wilson, S. A.; Liu, L. V.; Kang, E. A.; Braymer, J. J.; Lim, M. H.; Hedman, B.; Hodgson, K. O.; Valentine, J. S.; Solomon, E. I.; Nam, W. Nature 2011, 478, 502.  doi: 10.1038/nature10535

    31. [31]

      Cho, J.; Sarangi, R.; Nam, W. Acc. Chem. Res. 2012, 45, 1321.  doi: 10.1021/ar3000019

    32. [32]

      Yokoyama, A.; Han, J. E.; Cho, J.; Kubo, M.; Ogura, T.; Siegler, M. A.; Karlin, K. D.; Nam, W. J. Am. Chem. Soc. 2012, 134, 15269.  doi: 10.1021/ja307384e

    33. [33]

      Kang, H.; Cho, J.; Cho, K.-B.; Nomura, T.; Ogura, T.; Nam, W. Chem. Eur. J. 2013, 19, 14119.  doi: 10.1002/chem.201301641

    34. [34]

      Cho, J.; Kang, H. Y.; Liu, L. V.; Sarangi, R.; Solomon, E. I.; Nam, W. Chem. Sci. 2013, 4, 1502.  doi: 10.1039/c3sc22173c

    35. [35]

      Yokoyama, A.; Han, J. E.; Karlin, K. D.; Nam, W. Chem. Commun. 2014, 50, 1742.  doi: 10.1039/C3CC48782B

    36. [36]

      Schopfer, M. P.; Wang, J.; Karlin, K. D. Inorg. Chem. 2010, 49, 6267.  doi: 10.1021/ic100033y

    37. [37]

      (a) Lee, Y. -M. ; Bang, S. ; Kim, Y. M. ; Cho, J. ; Hong, S. ; Nomura, T. ; Ogura, T. ; Troeppner, O. ; Ivanović-Burmazović, I. ; Sarangi, R. ; Fukuzumi, S. ; Nam, W. Chem. Sci. 2013, 4, 3917. (b) Li, F. ; Van Heuvelen, K. M. ; Meier, K. K. ; Münck, E. ; Que, L., Jr. J. Am. Chem. Soc. 2013, 135, 10198.

    38. [38]

      (a) Fukuzumi, S. ; Ohkubo, K. Chem. Eur. J. 2000, 6, 4532. (b) Fukuzumi, S. ; Ohkubo, K. J. Am. Chem. Soc. 2002, 124, 10270.

    39. [39]

      Bang, S.; Lee, Y.-M.; Hong, S.; Cho, K.-B.; Nishida, Y.; Seo, M. S.; Sarangi, R.; Fukuzumi, S.; Nam, W. Nat. Chem. 2014, 6, 934.  doi: 10.1038/nchem.2055

    40. [40]

      Bae, S. H.; Lee, Y.-M.; Fukuzumi, S.; Nam, W. Angew. Chem., Int. Ed. 2017, 56, 801.  doi: 10.1002/anie.201610828

    41. [41]

      (a) Burger, R. M. Chem. Rev. 1998, 98, 1153. (b) Burger, R. M. ; Projan, S. J. ; Horwitz, S. B. ; Peisach, J. J. Biol. Chem. 1986, 261, 15955. (c) Stubbe, J. ; Kozarich, J. W. ; Wu, W. ; Vanderwall, D. E. Acc. Chem. Res. 1996, 29, 322.

    42. [42]

      (a) Neese, F. ; Zaleski, J. M. ; Zaleski, K. L. ; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 11703. (b) Burger, R. M. In Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations, Eds. : Meunier, B., Springer, Berlin, 2000, p. 287. (c) Veselov, A. ; Sun, H. ; Sienkiewicz, A. ; Taylor, H. ; Burger, R. M. ; Scholes, C. P. J. Am. Chem. Soc. 1995, 117, 7508. (d) Burger, R. M. ; Kent, T. A. ; Horwitz, S. B. ; Münck, E. ; Peisach, J. J. Biol. Chem. 1983, 258, 1559. (e) Veselov, A. ; Burger, R. M. ; Scholes, C. P. J. Am. Chem. Soc. 1998, 120, 1030. (f) Niwayama, S. ; Kobayashi, S. ; Ohno, M. J. Am. Chem. Soc. 1994, 116, 3290.

    43. [43]

      Hoehn, S. T.; Junker, H.-D.; Bunt, R. C.; Turner, C. J.; Stubbe, J. Biochemistry 2001, 40, 5894.  doi: 10.1021/bi002635g

    44. [44]

      (a) Pitié, M. ; Pratviel, G. Chem. Rev. 2010, 110, 1018. (b) Lehmann, T. E. ; Serrano, M. L. ; Que, L., Jr. Biochemistry 2000, 39, 3886.

    45. [45]

      Decker, A.; Chow, M. S.; Kemsley, J. N.; Lehnert, N.; Solomon, E. I. J. Am. Chem. Soc. 2006, 128, 4719.  doi: 10.1021/ja057378n

    46. [46]

      Chow, M. S.; Liu, L. V.; Solomon, E. I. Proc. Natl. Acad. Sci. U. S. A 2008, 105, 13241.  doi: 10.1073/pnas.0806378105

    47. [47]

      (a) Park, M. J. ; Lee, J. ; Suh, Y. ; Kim, J. ; Nam, W. J. Am. Chem. Soc. 2006, 128, 2630. (b) Hazell, A. ; McKenzie, C. J. ; Nielsen, L. P. ; Schindler, S. ; Weitzer, M. J. Chem. Soc., Dalton Trans. 2002, 310. (c) Koehntop, K. D. ; Rohde, J. -U. ; Costas, M. ; Que, L., Jr. Dalton Trans. 2004, 3191. (d) Mairata i Payeras, A. ; Ho, R. Y. ; Fujita, M. ; Que, L., Jr. Chem. Eur. J. 2004, 10, 4944. (e) Kim, C. ; Chen, K. ; Kim, J. ; Que, L. J. Am. Chem. Soc. 1997, 119, 5964.

    48. [48]

      Liu, L. V.; Hong, S.; Cho, J.; Nam, W.; Solomon, E. I. J. Am. Chem. Soc. 2013, 135, 3286.  doi: 10.1021/ja400183g

    49. [49]

      Kim, Y. M.; Cho, K.-B.; Cho, J.; Wang, B.; Li, C.; Shaik, S.; Nam, W. J. Am. Chem. Soc. 2013, 135, 8838.  doi: 10.1021/ja404152q

    50. [50]

      Li, F.; Meier, K. K.; Cranswick, M. A.; Chakrabarti, M.; Van Heuvelen, K. M.; Münck, E.; Que, L. J. Am. Chem. Soc. 2011, 133, 7256.  doi: 10.1021/ja111742z

    51. [51]

      Bang, S.; Park, S.; Lee, Y.-M.; Hong, S.; Cho, K.-B.; Nam, W. Angew. Chem., Int. Ed. 2014, 53, 7843.  doi: 10.1002/anie.201404556

    52. [52]

      (a) Que, L., Jr. Bull. Jpn. Soc. Coord. Chem. 2013, 62, 30. (b) Kumar, D. ; de Visser, S. P. ; Sharma, P. K. ; Hirao, H. ; Shaik, S. Biochemistry 2005, 44, 8148. (c) Wang, Y. ; Chen, H. ; Makino, M. ; Shiro, Y. ; Nagano, S. ; Asamizu, S. ; Onaka, H. ; Shaik, S. J. Am. Chem. Soc. 2009, 131, 6748. (d) Li, X. -X. ; Postils, V. ; Sun, W. ; Faponle, A. S. ; Solà, M. ; Wang, Y. ; Nam, W. ; de Visser, S. P. Chem. Eur. J. 2017, 23, 6406. (e) Shaik, S. ; Cohen, S. ; Wang, Y. ; Chen, H. ; Kumar, D. ; Thiel, W. Chem. Rev. 2010, 110, 949. (f) Wang, Y. ; Yang, C. ; Wang, H. ; Han, K. ; Shaik, S. ChemBioChem 2007, 8, 277.

    53. [53]

      Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.  doi: 10.1126/science.287.5458.1615

    54. [54]

      Rittle, J.; Green, M. T. Science 2010, 330, 933.  doi: 10.1126/science.1193478

    55. [55]

      (a) Nam, W. Acc. Chem. Res. 2007, 40, 522. (b) Hong, S. ; Lee, Y. -M. ; Ray, K. ; Nam, W. Coord. Chem. Rev. 2017, 334, 25. (c) Cooper, H. L. R. ; Groves, J. T. Arch. Biochem. Biophys. 2011, 507, 111. (d) Denisov, I. G. ; Makris, T. M. ; Sligar, S. G. ; Schlichting, I. Chem. Rev. 2005, 105, 2253. (e) Meunier, B. ; de Visser, S. P. ; Shaik, S. Chem. Rev. 2004, 104, 3947.

    56. [56]

      Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101, 1032.  doi: 10.1021/ja00498a040

    57. [57]

      (a) Gelalcha, F. G. Adv. Synth. Catal. 2014, 356, 261. (b) Huang, X. ; Groves, J. T. J. Biol. Inorg. Chem. 2017, 22, 185.

    58. [58]

      Elkins, J. M.; Ryle, M. J.; Clifton, I. J.; Dunning Hotopp, J. C.; Lloyd, J. S.; Burzlaff, N. I.; Baldwin, J. E.; Hausinger, R. P.; Roach, P. L. Biochemistry 2002, 41, 5185.  doi: 10.1021/bi016014e

    59. [59]

      Proshlyakov, D. A.; Henshaw, T. F.; Monterosso, G. R.; Ryle, M. J.; Hausinger, R. P. J. Am. Chem. Soc. 2004, 126, 1022.  doi: 10.1021/ja039113j

    60. [60]

      Riggs-Gelasco, P. J.; Price, J. C.; Guyer, R. B.; Brehm, J. H.; Barr, E. W.; Bollinger, J. M., Jr.; Krebs, C. J. Am. Chem. Soc. 2004, 126, 8108.  doi: 10.1021/ja048255q

    61. [61]

      Price, J. C.; Barr, E. W.; Glass, T. E.; Krebs, C.; Bollinger, J. M., Jr. J. Am. Chem. Soc. 2003, 125, 13008.  doi: 10.1021/ja037400h

    62. [62]

      (a) Sinnecker, S. ; Svensen, N. ; Barr, E. W. ; Ye, S. ; Bollinger, J. M., Jr. ; Neese, F. ; Krebs, C. J. Am. Chem. Soc. 2007, 129, 6168. (b) Abu-Omar, M. M. ; Loaiza, A. ; Hontzeas, N. Chem. Rev. 2005, 105, 2227. (c) Bollinger, J. M., Jr. ; Price, J. C. ; Hoffart, L. M. ; Barr, E. W. ; Krebs, C. Eur. J. Inorg. Chem. 2005, 2005, 4245. (d) McDonald, A. R. ; Que, L., Jr. Coord. Chem. Rev. 2013, 257, 414. (e) Ryle, M. J. ; Padmakumar, R. ; Hausinger, R. P. Biochemistry 1999, 38, 15278.

    63. [63]

      Klinker, E. J.; Kaizer, J.; Brennessel, W. W.; Woodrum, N. L.; Cramer, C. J.; Que, L., Jr. Angew. Chem., Int. Ed. 2005, 44, 3690.  doi: 10.1002/(ISSN)1521-3773

    64. [64]

      (a) Hohenberger, J. ; Ray, K. ; Meyer, K. Nat. Commun. 2012, 3, 720. (b) Klein, J. E. M. N. ; Que, L., Jr. In Encyclopedia of Inorganic and Bioinorganic Chemistry, Eds. : Scott, R. A., John Wiley & Sons, Ltd, New York, 2016, p. 1. (c) Nam, W. ; Lee, Y. -M. ; Fukuzumi, S. Acc. Chem. Res. 2014, 47, 1146. (d) Puri, M. ; Que, L., Jr. Acc. Chem. Res. 2015, 48, 2443. (e) Que, L., Jr. Acc. Chem. Res. 2007, 40, 493. (f) Ryabov, A. D. Adv. Inorg. Chem. 2013, 65, 117.

    65. [65]

      (a) Thibon, A. ; England, J. ; Martinho, M. ; Young, V. G., Jr. ; Frisch, J. R. ; Guillot, R. ; Girerd, J. -J. ; Münck, E. ; Que, L., Jr. ; Banse, F. Angew. Chem., Int. Ed. 2008, 47, 7064. (b) England, J. ; Guo, Y. ; Farquhar, E. R. ; Young, V. G., Jr. ; Münck, E. ; Que, L., Jr. J. Am. Chem. Soc. 2010, 132, 8635. (c) Lacy, D. C. ; Gupta, R. ; Stone, K. L. ; Greaves, J. ; Ziller, J. W. ; Hendrich, M. P. ; Borovik, A. S. J. Am. Chem. Soc. 2010, 132, 12188. (d) Meyer, S. ; Klawitter, I. ; Demeshko, S. ; Bill, E. ; Meyer, F. Angew. Chem., Int. Ed. 2013, 52, 901. (e) England, J. ; Bigelow, J. O. ; Van Heuvelen, K. M. ; Farquhar, E. R. ; Martinho, M. ; Meier, K. K. ; Frisch, J. R. ; Münck, E. ; Que, L., Jr. Chem. Sci. 2014, 5, 1204. (f) Prakash, J. ; Rohde, G. T. ; Meier, K. K. ; Münck, E. ; Que, L., Jr. Inorg. Chem. 2015, 54, 11055.

    66. [66]

      England, J.; Martinho, M.; Farquhar, E. R.; Frisch, J. R.; Bominaar, E. L.; Münck, E.; Que, L., Jr. Angew. Chem., Int. Ed. 2009, 48, 3622.  doi: 10.1002/anie.v48:20

    67. [67]

      Wang, D.; Ray, K.; Collins, M. J.; Farquhar, E. R.; Frisch, J. R.; Gómez, L.; Jackson, T. A.; Kerscher, M.; Waleska, A.; Comba, P.; Costas, M.; Que, L., Jr. Chem. Sci. 2013, 4, 282.  doi: 10.1039/C2SC21318D

    68. [68]

      Sastri, C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson, T. A.; Ray, K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L., Jr.; Shaik, S.; Nam, W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 19181.  doi: 10.1073/pnas.0709471104

    69. [69]

      Lee, Y.-M.; Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130, 434.  doi: 10.1021/ja077994e

    70. [70]

      Fukuzumi, S.; Kotani, H.; Lee, Y.-M.; Nam, W. J. Am. Chem. Soc. 2008, 130, 15134.  doi: 10.1021/ja804969k

    71. [71]

      Seo, M. S.; In, J.-H.; Kim, S. O.; Oh, N. Y.; Hong, J.; Kim, J.; Que, L., Jr.; Nam, W. Angew. Chem., Int. Ed. 2004, 43, 2417.  doi: 10.1002/(ISSN)1521-3773

    72. [72]

      Sastri, C. V.; Oh, K.; Lee, Y. J.; Seo, M. S.; Shin, W.; Nam, W. Angew. Chem., Int. Ed. 2006, 45, 3992.  doi: 10.1002/(ISSN)1521-3773

    73. [73]

      (a) Park, J. ; Morimoto, Y. ; Lee, Y. -M. ; Nam, W. ; Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 5236. (b) Park, J. ; Morimoto, Y. ; Lee, Y. -M. ; You, Y. ; Nam, W. ; Fukuzumi, S. Inorg. Chem. 2011, 50, 11612. (c) Fukuzumi, S. ; Morimoto, Y. ; Kotani, H. ; Naumov, P. ; Lee, Y. -M. ; Nam, W. Nat. Chem. 2010, 2, 756. (d) Morimoto, Y. ; Kotani, H. ; Park, J. ; Lee, Y. -M. ; Nam, W. ; Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 403.

    74. [74]

      (a) Park, J. ; Morimoto, Y. ; Lee, Y. -M. ; Nam, W. ; Fukuzumi, S. J. Am. Chem. Soc. 2012, 134, 3903. (b) Park, J. ; Lee, Y. -M. ; Nam, W. ; Fukuzumi, S. J. Am. Chem. Soc. 2013, 135, 5052.

    75. [75]

      Gunderson, W. A.; Zatsman, A. I.; Emerson, J. P.; Farquhar, E. R.; Que, L.; Lipscomb, J. D.; Hendrich, M. P. J. Am. Chem. Soc. 2008, 130, 14465.  doi: 10.1021/ja8052255

    76. [76]

      Liu, L.-L.; Li, H.-X.; Wan, L.-M.; Ren, Z.-G.; Wang, H.-F.; Lang, J.-P. Chem. Commun. 2011, 47, 11146.  doi: 10.1039/c1cc14262c

    77. [77]

      Huang, X.-C.; Wang, H.-F.; Lang, J.-P. RSC Adv. 2016, 6, 81517.  doi: 10.1039/C6RA11199H

    78. [78]

      Edwards, R. A.; Baker, H. M.; Whittaker, M. M.; Whittaker, J. W.; Jameson, G. B.; Baker, E. N. J. Biol. Inorg. Chem. 1998, 3, 161.  doi: 10.1007/s007750050217

    79. [79]

      (a) Pick, M. ; Rabani, J. ; Yost, F. ; Fridovich, I. J. Am. Chem. Soc. 1974, 96, 7329. (b) Hsu, J. -L. ; Hsieh, Y. ; Tu, C. ; O'Connor, D. ; Nick, H. S. ; Silverman, D. N. J. Biol. Chem. 1996, 271, 17687.

    80. [80]

      Bull, C.; Niederhoffer, E. C.; Yoshida, T.; Fee, J. A. J. Am. Chem. Soc. 1991, 113, 4069.  doi: 10.1021/ja00011a003

    81. [81]

      Hearn, A. S.; Tu, C.; Nick, H. S.; Silverman, D. N. J. Biol. Chem. 1999, 274, 24457.  doi: 10.1074/jbc.274.35.24457

    82. [82]

      Abreu, I. A.; Rodriguez, J. A.; Cabelli, D. E. J. Phys. Chem. B 2005, 109, 24502.  doi: 10.1021/jp052368u

    83. [83]

      Jackson, T. A.; Karapetian, A.; Miller, A.-F.; Brunold, T. C. Biochemistry 2005, 44, 1504.  doi: 10.1021/bi048639t

    84. [84]

      Porta, J.; Vahedi-Faridi, A.; Borgstahl, G. E. J. Mol. Biol. 2010, 399, 377.  doi: 10.1016/j.jmb.2010.04.031

    85. [85]

      (a) VanAtta, R. B. ; Strouse, C. E. ; Hanson, L. K. ; Valentine, J. S. J. Am. Chem. Soc. 1987, 109, 1425. (b) Kitajima, N. ; Komatsuzaki, H. ; Hikichi, S. ; Osawa, M. ; Moro-oka, Y. J. Am. Chem. Soc. 1994, 116, 11596. (c) Singh, U. P. ; Sharma, A. K. ; Hikichi, S. ; Komatsuzaki, H. ; Moro-oka, Y. ; Akita, M. Inorg. Chim. Acta 2006, 359, 4407. (d) Seo, M. S. ; Kim, J. Y. ; Annaraj, J. ; Kim, Y. ; Lee, Y. -M. ; Kim, S. -J. ; Kim, J. ; Nam, W. Angew. Chem., Int. Ed. 2007, 46, 377. (e) Annaraj, J. ; Cho, J. ; Lee, Y. -M. ; Kim, S. Y. ; Latifi, R. ; de Visser, S. P. ; Nam, W. Angew. Chem., Int. Ed. 2009, 48, 4150.

    86. [86]

      (a) Groni, S. ; Blain, G. ; Guillot, R. ; Policar, C. ; E., A. -M. Inorg. Chem. 2007, 46, 1951. (b) Groni, S. ; Dorlet, P. ; Blain, G. ; Bourcier, S. ; Guillot, R. ; E., A. -M. Inorg. Chem. 2008, 47, 3166. (c) Geiger, R. A. ; Chattopadhyay, S. ; Day, V. W. ; Jackson, T. A. J. Am. Chem. Soc. 2010, 132, 2821. (d) Geiger, R. A. ; Chattopadhyay, S. ; Day, V. W. ; Jackson, T. A. Dalton Trans. 2011, 40, 1707. (e) Geiger, R. A. ; Wijeratne, G. B. ; Day, V. W. ; Jackson, T. A. Eur. J. Inorg. Chem. 2012, 1598. (f) Shook, R. L. ; Gunderson, W. A. ; Greaves, J. ; Ziller, J. W. ; Hendrich, M. P. ; Borovik, A. S. J. Am. Chem. Soc. 2008, 130, 8888. (g) Shook, R. L. ; Peterson, S. M. ; Greaves, J. ; Moore, C. ; Rheingold, A. L. ; Borovik, A. S. J. Am. Chem. Soc. 2011, 133, 5810. (h) Du, J. ; Xu, D. ; Zhang, C. ; Xia, C. ; Wang, Y. ; Sun, W. Dalton Trans. 2016, 45, 10131.

    87. [87]

      Shook, R. L.; Borovik, A. S. Inorg. Chem. 2010, 49, 3646.  doi: 10.1021/ic901550k

    88. [88]

      Sankaralingam, M.; Lee, Y.-M.; Jeon, S. H.; Seo, M. S.; Cho, K.-B.; Nam, W. Chem. Commun. 2018, 54, 1209.  doi: 10.1039/C7CC09492B

    89. [89]

      Jo, Y.; Annaraj, J.; Seo, M. S.; Lee, Y.-M.; Kim, S. Y.; Cho, J.; Nam, W. J. Inorg. Biochem. 2008, 102, 2155.  doi: 10.1016/j.jinorgbio.2008.08.008

    90. [90]

      So, H.; Park, Y. J.; Cho, K.-B.; Lee, Y.-M.; Seo, M. S.; Cho, J.; Sarangi, R.; Nam, W. J. Am. Chem. Soc. 2014, 136, 12229.  doi: 10.1021/ja506275q

    91. [91]

      Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Nature 2011, 473, 55.  doi: 10.1038/nature09913

    92. [92]

      Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.; Zhao, J. Science 2015, 348, 690.  doi: 10.1126/science.aaa6550

    93. [93]

      (a) Tanaka, A. ; Fukushima, Y. ; Kamiya, N. J. Am. Chem. Soc. 2017, 139, 1718. (b) Lubitz, W. ; Reijerse, E. J. ; Messinger, J. Energy Environ. Sci. 2008, 1, 15. (c) Young, K. J. ; Brennan, B. J. ; Tagore, R. ; Brudvig, G. W. Acc. Chem. Res. 2015, 48, 567. (d) Cox, N. ; Pantazis, D. A. ; Neese, F. ; Lubitz, W. Acc. Chem. Res. 2013, 46, 1588.

    94. [94]

      Collins, T. J.; Gordon-Wylie, S. W. J. Am. Chem. Soc. 1989, 111, 4511.  doi: 10.1021/ja00194a063

    95. [95]

      (a) Collins, T. J. Acc. Chem. Res. 2002, 35, 782. (b) Popescu, D. -L. ; Chanda, A. ; Stadler, M. ; de Oliveira, F. T. ; Ryabov, A. D. ; Münck, E. ; Bominaar, E. L. ; Collins, T. J. Coord. Chem. Rev. 2008, 252, 2050.

    96. [96]

      Miller, C. G.; Gordon-Wylie, S. W.; Horwitz, C. P.; Strazisar, S. A.; Peraino, D. K.; Clark, G. R.; Weintraub, S. T.; Collins, T. J. J. Am. Chem. Soc. 1998, 120, 11540.  doi: 10.1021/ja972922g

    97. [97]

      Hong, S.; Lee, Y.-M.; Sankaralingam, M.; Vardhaman, A. K.; Park, Y. J.; Cho, K.-B.; Ogura, T.; Sarangi, R.; Fukuzumi, S.; Nam, W. J. Am. Chem. Soc. 2016, 138, 8523.  doi: 10.1021/jacs.6b03874

    98. [98]

      (a) Massie, A. A. ; Denler, M. C. ; Cardoso, L. T. ; Walker, A. N. ; Hossain, M. K. ; Day, V. W. ; Nordlander, E. ; Jackson, T. A. Angew. Chem., Int. Ed. 2017, 56, 4178. (b) Wu, X. ; Seo, M. S. ; Davis, K. M. ; Lee, Y. -M. ; Chen, J. ; Cho, K. -B. ; Pushkar, Y. N. ; Nam, W. J. Am. Chem. Soc. 2011, 133, 20088. (c) Chen, J. ; Lee, Y. -M. ; Davis, K. M. ; Wu, X. ; Seo, M. S. ; Cho, K. -B. ; Yoon, H. ; Park, Y. J. ; Fukuzumi, S. ; Pushkar, Y. N. ; Nam, W. J. Am. Chem. Soc. 2013, 135, 6388.

    99. [99]

      Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.-B.; Kim, S. H.; Seo, M. S.; Lee, Y.-M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Angew. Chem., Int. Ed. 2010, 49, 8190.  doi: 10.1002/anie.v49:44

    100. [100]

      Wu, X.; Yang, X.; Lee, Y.-M.; Nam, W.; Sun, L. Chem. Commun. 2015, 51, 4013.  doi: 10.1039/C4CC10411K

    101. [101]

      Shen, D.; Saracini, C.; Lee, Y.-M.; Sun, W.; Fukuzumi, S.; Nam, W. J. Am. Chem. Soc. 2016, 138, 15857.  doi: 10.1021/jacs.6b10836

    102. [102]

    103. [103]

      (a) Ottenbacher, R. V.; Samsonenko, D. G.; Talsi, E. P.; Bryliakov, K. P. Org. Lett. 2012, 14, 4310. (b) Talsi, E. P.; Bryliakov, K. P. Coord. Chem. Rev. 2012, 256, 1418. (c) Lyakin, O. Y.; Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P. ACS Catal. 2012, 2, 1196. (d) Ottenbacher, R. V.; Samsonenko, D. G.; Talsi, E. P.; Bryliakov, K. P. ACS Catal. 2014, 4, 1599. (e) Ottenbacher, R. V.; Talsi, E. P.; Bryliakov, K. P. ACS Catal. 2014, 5, 39. (f) Ottenbacher, R. V.; Samsonenko, D. G.; Talsi, E. P.; Bryliakov, K. P. ACS Catal. 2016, 6, 979. (g) Talsi, E. P.; Samsonenko, D. G.; Bryliakov, K. P. ChemCatChem 2017, 9, 2599.

    104. [104]

      (a) Garcia-Bosch, I.; Gómez, L.; Polo, A.; Ribas, X.; Costas, M. Adv. Synth. Catal. 2012, 354, 65. (b) Cussó, O.; Garcia-Bosch, I.; Font, D.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Org. Lett. 2013, 15, 6158. (c) Milan, M.; Bietti, M.; Costas, M. ACS Cent. Sci. 2017, 3, 196. (d) Milan, M.; Carboni, G.; Salamone, M.; Costas, M.; Bietti, M. ACS Catal. 2017, 7, 5903.

    105. [105]

      (a) Miao, C.; Li, X.-X.; Lee, Y.-M.; Xia, C.; Wang, Y.; Nam, W.; Sun, W. Chem. Sci. 2017, 8, 7476. (b) Miao, C.; Wang, B.; Wang, Y.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. J. Am. Chem. Soc. 2016, 138, 936.

    106. [106]

      (a) Dai, W.; Li, J.; Chen, B.; Li, G.; Lv, Y.; Wang, L.; Gao, S. Org. Lett. 2013, 15, 5658. (b) Dai, W.; Li, J.; Li, G.; Yang, H.; Wang, L.; Gao, S. Org. Lett. 2013, 15, 4138. (c) Dai, W.; Li, G. S.; Wang, L.; Chen, B.; Shang, S.; Lv, Y.; Gao, S. RSC Adv. 2014, 4, 46545. (d) Dai, W.; Shang, S.; Chen, B.; Li, G.; Wang, L.; Ren, L.; Gao, S. J. Org. Chem. 2014, 79, 6688. (e) Dai, W.; Lv, Y.; Wang, L.; Shang, S.; Chen, B.; Li, G.; Gao, S. Chem. Commun. 2015, 51, 11268. (f) Dai, W.; Shang, S.; Lv, Y.; Li, G.; Li, C.; Gao, S. ACS Catal. 2017, 7, 4890.

    107. [107]

      Yoon, H.; Lee, Y.-M.; Wu, X.; Cho, K.-B.; Sarangi, R.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc. 2013, 135, 9186.  doi: 10.1021/ja403965h

    108. [108]

      Chen, J.; Yoon, H.; Lee, Y.-M.; Seo, M. S.; Sarangi, R.; Fukuzumi, S.; Nam, W. Chem. Sci. 2015, 6, 3624.  doi: 10.1039/C5SC00535C

    109. [109]

      Lee, Y.-M.; Yoo, M.; Yoon, H.; Li, X.-X.; Nam, W.; Fukuzumi, S. Chem. Commun. 2017, 53, 9352.  doi: 10.1039/C7CC04035K

    110. [110]

      Kim, S.; Cho, K.-B.; Lee, Y.-M.; Chen, J.; Fukuzumi, S.; Nam, W. J. Am. Chem. Soc. 2016, 138, 10654.  doi: 10.1021/jacs.6b06252

    111. [111]

      Jung, J.; Kim, S.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Angew. Chem., Int. Ed. 2016, 55, 7450.  doi: 10.1002/anie.201602460

    112. [112]

      Jackson, T. A.; Brunold, T. C. Acc. Chem. Res. 2004, 37, 461.  doi: 10.1021/ar030272h

    113. [113]

      McEvoy, J. P.; Brudvig, G. W. Chem. Rev. 2006, 106, 4455.  doi: 10.1021/cr0204294

    114. [114]

      (a) Su, C.; Sahlin, M.; Oliw, E. H. J. Biol. Chem. 2000, 275, 18830. (b) Wennman, A.; Karkehabadi, S.; Oliw, E. H. Arch. Biochem. Biophys. 2014, 555-556, 9. (c) Wennman, A.; Oliw, E. H.; Karkehabadi, S.; Chen, Y. J. Biol. Chem. 2016, 291, 8130. (d) Gaffney, B. J.; Su, C.; Oliw, E. H. Appl. Magn. Reson. 2001, 21, 413.

    115. [115]

      Coggins, M. K.; Brines, L. M.; Kovacs, J. A. Inorg. Chem. 2013, 52, 12383.  doi: 10.1021/ic401234t

    116. [116]

      (a) Eichhorn, D. M.; Armstrong, W. H. J. Chem. Soc., Chem. Commun. 1992, 85. (b) Shirin, Z.; Young, V. G., Jr.; Borovik, A. S. Chem. Commun. 1997, 1967. (c) Shirin, Z.; Hammes, B. S.; Young, V. G., Jr.; Borovik, A. S. J. Am. Chem. Soc. 2000, 122, 1836. (d) Hubin, T. J.; McCormick, J. M.; Alcock, N. W.; Busch, D. H. Inorg. Chem. 2001, 40, 435. (e) Goldsmith, C. R.; Cole, A. P.; Stack, T. D. P. J. Am. Chem. Soc. 2005, 127, 9904. (f) Eroy-Reveles, A. A.; Leung, Y.; Beavers, C. M.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2008, 130, 4447. (g) El Ghachtouli, S.; Lassalle-Kaiser, B.; Dorlet, P.; Guillot, R.; Anxolabéhère-Mallart, E.; Costentin, C.; Aukauloo, A. Energy Environ. Sci. 2011, 4, 2041. (h) Wijeratne, G. B.; Corzine, B.; Day, V. W.; Jackson, T. A. Inorg. Chem. 2014, 53, 7622. (i) Rice, D. B.; Wijeratne, G. B.; Burr, A. D.; Parham, J. D.; Day, V. W.; Jackson, T. A. Inorg. Chem. 2016, 55, 8110.

    117. [117]

      Mayer, J. M. Acc. Chem. Res. 2011, 44, 36.  doi: 10.1021/ar100093z

    118. [118]

      Yin, G.; McCormick, J. M.; Buchalova, M.; Danby, A. M.; Rodgers, K.; Day, V. W.; Smith, K.; Perkins, C. M.; Kitko, D.; Carter, J. D.; Scheper, W. M.; Busch, D. H. Inorg. Chem. 2006, 45, 8052.  doi: 10.1021/ic0521123

    119. [119]

      Wang, Y.; Sheng, J.; Shi, S.; Zhu, D.; Yin, G. J. Phys. Chem. C 2012, 116, 13231.  doi: 10.1021/jp303281z

    120. [120]

      (a) Yin, G.; Danby, A. M.; Kitko, D.; Carter, J. D.; Scheper, W. M.; Busch, D. H. J. Am. Chem. Soc. 2007, 129, 1512. (b) Yin, G.; Danby, A. M.; Kitko, D.; Carter, J. D.; Scheper, W. M.; Busch, D. H. J. Am. Chem. Soc. 2008, 130, 16245. (c) Shi, S.; Wang, Y.; Xu, A.; Wang, H.; Zhu, D.; Roy, S. B.; Jackson, T. A.; Busch, D. H.; Yin, G. Angew. Chem., Int. Ed. 2011, 50, 7321. (d) Wang, Y.; Shi, S.; Wang, H.; Zhu, D.; Yin, G. Chem. Commun. 2012, 48, 7832. (e) Xu, A.; Xiong, H.; Yin, G. Chem. Eur. J. 2009, 15, 11478. (f) Xu, A.; Xiong, H.; Yin, G. J. Phys. Chem. A 2009, 113, 12243. (g) Chattopadhyay, S.; Geiger, R. A.; Yin, G.; Busch, D. H.; Jackson, T. A. Inorg. Chem. 2010, 49, 7530. (h) Yin, G. Coord. Chem. Rev. 2010, 254, 1826. (i) Wang, Y.; Shi, S.; Zhu, D.; Yin, G. Dalton Trans. 2012, 41, 2612. (j) Yin, G. Acc. Chem. Res. 2013, 46, 483. (k) Chen, Z.; Yin, G. Chem. Soc. Rev. 2015, 44, 1083.

    121. [121]

      Dong, L.; Wang, Y.; Lv, Y.; Chen, Z.; Mei, F.; Xiong, H.; Yin, G. Inorg. Chem. 2013, 52, 5418.  doi: 10.1021/ic400361s

    122. [122]

      (a) Zhang, Z.; Coats, K. L.; Chen, Z.; Hubin, T. J.; Yin, G. Inorg. Chem. 2014, 53, 11937. (b) Jones, D. G.; Wilson, K. R.; Cannon-Smith, D. J.; Shircliff, A. D.; Zhang, Z.; Chen, Z.; Prior, T. J.; Yin, G.; Hubin, T. J. Inorg. Chem. 2015, 54, 2221. (c) Matz, D. L.; Jones, D. G.; Roewe, K. D.; Gorbet, M.-J.; Zhang, Z.; Chen, Z.; Prior, T. J.; Archibald, S. J.; Yin, G.; Hubin, T. J. Dalton Trans. 2015, 44, 12210.

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    19. [19]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    20. [20]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

Metrics
  • PDF Downloads(42)
  • Abstract views(2546)
  • HTML views(656)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return