Citation: Wang Ming, Jiang Xuefeng. Efficient Fluoren-9-ones Construction through CO/I Exchange of Diaryliodonium Salts[J]. Acta Chimica Sinica, ;2018, 76(5): 377-381. doi: 10.6023/A18020073 shu

Efficient Fluoren-9-ones Construction through CO/I Exchange of Diaryliodonium Salts

  • Corresponding author: Jiang Xuefeng, xfjiang@chem.ecnu.edu.cn
  • Received Date: 20 February 2018
    Available Online: 13 May 2018

    Fund Project: the National Natural Science Foundation of China 21502054Project supported by the National Natural Science Foundation of China (Nos. 21722202, 21672069, 21472050, 21502054), Doctoral Fund of Ministry of Education of China (No. 20130076110023)Doctoral Fund of Ministry of Education of China 20130076110023the National Natural Science Foundation of China 21472050the National Natural Science Foundation of China 21722202the National Natural Science Foundation of China 21672069

Figures(3)

  • Fluoren-9-ones derivatives have attracted much attention due to their extensively applications in pharmaceuticals, natural products and photoelectric materials. In recent decades, C—H bond functionalization is the most powerful method to access fluorenone skeleton. Although these interesting studies exploited highly efficient routes to the fluoren-9-one, in many examples, it is easy to produce two isomers in the meta-substituted substrates because of the existence of two different C—H bonds in the ortho-position. It is still indispensable to develop efficient methods for fluoren-9-ones construction. Diaryliodonium salt as a stable and easily prepared reagent reported by Hartmann and Meyer since 1894, which has been one of the most efficient arylation reagents in organic synthesis. Generally, diaryliodonium salt was employed as a single arylation reagent. In the past few years, the both aryl employments of diaryliodonium salt were explored due to the improvement of atom economy. Recently, we developed the atom exchange reactions of intramolecular and intermolecular diaryliodonium salts for sulfide, selenide, sulfone, acridine and carbazole constructions, which could employ both aryl groups of diaryliodonium salt. Continuous with our research of using such atom exchange method for significant molecular construction, herein, a CO/I exchange method of diaryliodonium salts with carbon monoxide was developed for construction of functional fluoren-9-ones. Both aryl groups in diaryliodonium salt were fully exerted in this transformation, which proceeded smoothly in a CO balloon atmosphere to afford the desired products in moderate to excellent yields with good functional-group compatibility. Note that this protocol avoided the emerging of isomers, which were easy to be formed in C—H bond functionalization method. A representative procedure for this reaction is as following:Under a CO atmosphere, Pd(OAc)2 (0.01 mmol), dppf (0.012 mmol), K3PO4 (0.2 mmol), diaryliodonium salts 1 and toluene (1 mL) were added to a flame-dried Schlenk tube. The resulting mixture was stirred at 80℃ for 24 h. Water (5 mL) was added and the solution was extracted with ethyl acetate, organic layers were combined, dried over sodium sulfate. After evaporation of solvent, the residue was purified by column chromatography to give the corresponding products.
  • 加载中
    1. [1]

      Selected examples, see: (a) Krueger, R. F. ; Mayer, G. D. Science 1970, 169, 1213; (b) Greenlee, M. L. ; Laub, J. B. ; Rouen, G. P. ; DiNinno, F. ; Hammond, M. L. ; Huber, J. L. ; Sundelof, J. G. ; Hammond, G. G. Bioorg. Med. Chem. Lett. 1999, 9, 3225; (c) Perry, P. J. ; Read, M. A. ; Davies, R. T. ; Gowan, S. M. ; Reszka, A. P. ; Wood, A. A. ; Kelland, L. R. ; Neidle, S. J. Med. Chem. 1999, 42, 2679.

    2. [2]

      (a) Talapatra, S. K. ; Bose, S. ; Malik, A. K. ; Talapatra, B. Tetrahedron 1985, 41, 2765; (b) Jone, Jr., W. D. ; Ciske, F. L. J. Org. Chem. 1996, 61, 3920.

    3. [3]

      Selected examples, see: (a) Uckert, F. ; Tak, Y. -H. ; Müllen, K. ; Bässler, H. Adv. Mater. 2000, 12, 905; (b) Gong, X. ; Moses, D. ; Heeger, A. J. J. Phys. Chem. B 2004, 108, 8601; (c) Qin, C. ; Islam, A. ; Han, L. J. Mater. Chem. 2012, 22, 19236.

    4. [4]

      Representative reviews, see: (a) Wu, X. -F. ; Neumann, H. ; Beller, M. Chem. Soc. Rev. 2011, 40, 4986; (b) Chen, J. -R. ; Hu, X. -Q. ; Lu, L. -Q. ; Xiao, W. -J. Chem. Rev. 2015, 115, 5301. Selected examples, see: (c) Campo, M. A. ; Larock, R. C. Org. Lett. 2000, 2, 3675; (d) Campo, M. A. ; Larock, R. C. J. Org. Chem. 2002, 67, 5616; (e) Zhao, J. ; Yue, D. ; Campo, M. A. ; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288; (f) Sun, C. -L. ; Liu, N. ; Li, B. -J. ; Yu, D. -G. ; Wang, Y. ; Shi, Z. -J. Org. Lett. 2010, 12, 184; (g) Li, H. ; Zhu, R. -Y. ; Shi, W. -J. ; He, K. -H. ; Shi, Z. -J. Org. Lett. 2012, 14, 4850; (h) Gandeepan, P. ; Hung, C. -H. ; Cheng, C. -H. Chem. Commun. 2012, 48, 9379; (i) Song, J. ; Wei, F. ; Sun, W. ; Li, K. ; Tian, Y. ; Liu, C. ; Li, Y. ; Xie, L. Org. Lett. 2015, 17, 2106; (j) Sun, D. ; Li, B. ; Lan, J. ; Huang, Q. ; You, J. Chem. Commun. 2016, 52, 3635; (k) Wu, J. ; Liu, Y. ; Ma, X. ; Liu, P. ; Gu, C. ; Dai, B. Chin. J. Chem. 2017, 35, 1391.

    5. [5]

      Hartmann, C.; Meyer, V. Ber. Dtsch. Chem. Ges. 1894, 27, 426.  doi: 10.1002/(ISSN)1099-0682

    6. [6]

      Representative reviews, see: (a) Stang, P. J. ; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123; (b) Grushin, V. V. Chem. Soc. Rev. 2000, 29, 315; (c) Deprez, N. R. ; Sanford, M. S. Inorg. Chem. 2007, 46, 1924; (d) Zhdankin, V. V. ; Stang, P. J. Chem. Rev. 2008, 108, 5299; (e) Merritt, E. A. ; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052; (f) Yusubov, M. S. ; Maskaev, A. V. ; Zhdankin, V. V. ARKIVOC 2011, 370; (g) Kita, Y. ; Dohi, T. Chem. Rec. 2015, 15, 886; (h) Yoshimura, A. ; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328; (i) Wirth, T. Topics in Current Chemistry, 2016, 373, 1-316; (j) Fañanás-Mastral, M. Synthesis 2017, 49, 1905.

    7. [7]

      Selected examples, see: (a) Daugulis, O. ; Zaitsev, V. G. Angew. Chem. Int. Ed. 2005, 44, 4046; (b) Kalyani, D. ; Deprez, N. R. ; Desai, L. V. ; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330; (c) Deprez, N. R. ; Kalyani, D. ; Krause, A. ; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972; (d) Phipps, R. J. ; Grimster, N. P. ; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172; (e) Phipps, R. J. ; Gaunt, M. J. Science 2009, 323, 1593; (f) Deprez, N. R. ; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234; (g) Dohi, T. ; Ito, M. ; Yamaoka, N. ; Morimoto, K. ; Fujioka, H. ; Kita, Y. Angew. Chem., Int. Ed. 2010, 49, 3334; (h) Xiao, B. ; Fu, Y. ; Xu, J. ; Gong, T. -J. ; Dai, J. -J. ; Yi, J. ; Liu, L. J. Am. Chem. Soc. 2010, 132, 468; (i) Ciana, C. ; Phipps, R. J. Brandt, J. R. ; Meyer, F. ; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 458; (j) Storr, T. E. ; Greaney, M. F. Org. Lett. 2013, 15, 1410.

    8. [8]

    9. [9]

      Selected examples, see: (a) Kina, A. ; Miki, H. ; Cho, Y. -H. ; Hayashi, T. Adv. Synth. Catal. 2004, 346, 1728; (b) Aydin, J. ; Larsson, J. M. ; Selander, N. ; Szabo, K. J. Org. Lett. 2009, 11, 2852; (c) Cahard, E. ; Bremeyer, N. ; Gaunt, M. J. Angew. Chem., Int. Ed. 2013, 52, 9284; (d) Zhang, F. ; Das, S. ; Walkinshaw, A. J. ; Casitas, A. ; Taylor, M. ; Suero, M. G. ; Gaunt, M. J. J. Am. Chem. Soc. 2014, 136, 8851; (e) Holt, D. ; Gaunt, M. J. Angew. Chem., Int. Ed. 2015, 54, 7857; (f) Yang, M. -N. ; Yan, D. -M. ; Zhao, Q. -Q. ; Chen, J. -R. ; Xiao, W. -J. Org. Lett. 2017, 19, 5208.

    10. [10]

      Selected examples, see: (a) Ryan, J. H. ; Stang, P. J. Tetrahedron Lett. 1997, 38, 5061; (b) Ochiai, M. ; Kitagawa, Y. ; Takayama, N. ; Takaoka, Y. ; Shiro, M. J. Am. Chem. Soc. 1999, 121, 9233; (c) Aggarwal, V. K. ; Olofsson, B. Angew. Chem., Int. Ed. 2005, 44, 5516; (d) Allen, A. E. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 4260; (e) Bigot, A. ; Williamson, A. E. ; Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778; (f) Harvey, J. S. ; Simonovich, S. P. ; Jamison, C. R. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 13782.

    11. [11]

    12. [12]

      (a) Zhu, D. ; Liu, Q. ; Luo, B. ; Chen, M. ; Pi, R. ; Huang, P. ; Wen, S. Adv. Synth. Catal. 2013, 355, 2172; (b) Zhu, D. ; Wu, Y. ; Wu, B. ; Luo, B. ; Ganesan, A. ; Wu, F. -H. ; Pi, R. ; Huang, P. ; Wen, S. Org. Lett. 2014, 16, 2350; (c) Liu, Z. ; Zhu, D. ; Luo, B. ; Zhang, N. ; Liu, Q. ; Hu, Y. ; Pi, R. ; Huang, P. ; Wen, S. Org. Lett. 2014, 16, 5600; (d) Modha, S. G. ; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416; (e) Wu, B. ; Yoshikai, N. Angew. Chem., Int. Ed. 2015, 54, 8736; (f) Luo, B. ; Cui, Q. ; Luo, H. ; Hu, Y. ; Huang, P. ; Wen, S. Adv. Synth. Catal. 2016, 358, 2733; (g) Shimizu, M. ; Ogawa, M. ; Tamagawa, T. ; Shigitani, R. ; Nakatani, M. ; Nakano, Y. Eur. J. Org. Chem. 2016, 2785; (h) Teskey, C. J. ; Sohel, S. M. A. ; Bunting, D. L. ; Modha, S. G. ; Greaney, M. F. Angew. Chem., Int. Ed. 2017, 56, 5263.

    13. [13]

      (a) Wang, M. ; Fan, Q. ; Jiang, X. Org. Lett. 2016, 18, 5756; (b) Wang, M. ; Wei, J. ; Fan, Q. ; Jiang, X. Chem. Commun. 2017, 53, 2918; (c) Wang, M. ; Chen, S. ; Jiang, X. Org. Lett. 2017, 19, 4916; (d) Wang, M. ; Fan, Q. ; Jiang, X. Org. Lett. 2018, 20, 216.

    14. [14]

      CCDC 1525038(2j) can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    15. [15]

      (a) Feng, M. ; Tang, B. ; Wang, N. ; Xu, H. -X. ; Jiang, X. Angew. Chem., Int. Ed. 2015, 54, 14960; (b) Willcox, D. ; Chappell, B. G. N. ; Hogg, K. F. ; Calleja, J. ; Smalley, A. P. ; Gaunt, M. J. Science 2016, 354, 851.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    5. [5]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    6. [6]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    7. [7]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(2)
  • Abstract views(619)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return