Citation: Sun Mengjia, Wu Tianyi, Li Tianyu, Guo Fengqiao, Tang Yang, Mo Hengliang, Yang Zhitao, Wan Pingyu. Research on High Performance Ammonium Removal Materials Based on δ-MnO2 Nanoplate Arrays Decorated Graphite Felt[J]. Acta Chimica Sinica, ;2018, 76(6): 467-474. doi: 10.6023/A18020069 shu

Research on High Performance Ammonium Removal Materials Based on δ-MnO2 Nanoplate Arrays Decorated Graphite Felt

  • Corresponding author: Wan Pingyu, pywan@mail.buct.edu.cn
  • Received Date: 10 February 2018
    Available Online: 3 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21506010) and the Beijing Natural Science Foundation (No. 2182050)the Beijing Natural Science Foundation 2182050the National Natural Science Foundation of China 21506010

Figures(9)

  • We synthesized three kinds of MnO2 powder with different crystalline phases including α-MnO2 nanoflowers, β-MnO2 nanorods and δ-MnO2 micro-particles. The structure and morphology of prepared MnO2 were studied by XRD (X-ray diffraction), SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) and XPS (X-ray photoelectron spectroscopy), systematically. Adsorption process was conducted in NH4Cl solution (40 mg·L-1 NH3-N) and actual water samples containing NH4+, Ca2+, Mg2+, K+ and Na+, respectively. The results demonstrate that δ-MnO2 with 7.2 Å interlayer spacing which is a little larger than the diameter of hydrated ammonium (6.62 Å) has high adsorption capacity; α-MnO2 with[2×2] tunnel of 4.6 Å has less adsorption capacity than that of δ-MnO2, and β-MnO2 whose[1×1] tunnel is just 1.89 Å, barely has adsorption capacity. Then MnO2NPs/GF (MnO2 nanoplates decorated graphite felt) was prepared via a facile in-situ redox process. Graphite felt (GF) was immersed in KMnO4 solution (4 g·L-1, pH=2) at 65℃ for 5 h to get MnO2NPs/GF. GF not only reacted as the reductant of KMnO4, but also acted as 3D framework to support the in-situ deposited MnO2NPs. MnO2NPs/GF shows high adsorption capacity (15 mg·g-1) and good selectivity (86.7%). In repetitive adsorption-desorption experiments, MnO2NPs/GF not only exhibits good stability after 20 cycles, but also decreases the concentration of NH3-N to as low as 1 mg·L-1. The thermodynamics experiment demonstrates that the adsorption isotherm fit well with Langmuir isotherm, and the adsorption process corresponds to the pseudo-second-order model. The excellent performance of MnO2NPs/GF is attributed to the following three aspects. Firstly, the 7.2 Å interlayer spacing of δ-MnO2 is suitable for the exchange-adsorption of NH4+. Secondly, the ultra-thin MnO2 nanoplate arrays, which vertically grow on the graphite felt substrate, provide fast path and convenient interface for ion exchange. Finally, the interlaced nanoplates with self-supported structure ensure its high stability. In a conclusion, MnO2NPs/GF has a bright future in the field of ammonium removal.
  • 加载中
    1. [1]

      Origin water, Origin water is a practitioner of "Class Ⅳ water" standard and a leader of MBR technique, new normal 036/14/2016, http://www.originwater.com/cpyjs/MF/jslt/5613.html

    2. [2]

      (a) Guaya, D. ; Valderrama, C. ; Farran, A. ; Cortina, J. L. J. Chem. Technol. Biotechnol. 2016, 91, 1737; (b) Thornton, A. ; Pearce, P. ; Parsons, S. A. Water Res. 2007, 41, 433; (c) Montegut, G. ; Michelin, L. ; Brendle, J. ; Lebeau, B. ; Patarin, J. J. Environ. Manage. 2016, 167, 147; (d) Zieliński, M. ; Zielińska, M. ; Dębowski, M. Desalin. Water Treat. 2016, 57, 8748.

    3. [3]

      (a) Moussavi, G. ; Talebi, S. ; Farohki, M. ; Mojtabaee Sabouti, R. Desalin. Water Treat. 2013, 51, 5710; (b) Langwaldt, J. Sep. Sci. Technol. 2008, 43, 2166; (c) Wang, Y. F. Adv. Mater. Res. 2012, 554-556, 2031.

    4. [4]

    5. [5]

      Li, X.-J.; Zhao, Y.; Chu, W.-G.; Wang, Y.; Li, Z.-J.; Jiang, P.; Zhao, X.-C.; Liang, M.; Liu, Y. RSC Adv. 2015, 5, 77437.  doi: 10.1039/C5RA15146E

    6. [6]

      (a) Yuan, Y. ; Nie, A. ; Odegard, G. M. ; Xu, R. ; Zhou, D. ; Santhanagopalan, S. ; He, K. ; Asayesh-Ardakani, H. ; Meng, D. D. ; Klie, R. F. ; Johnson, C. ; Lu, J. ; Shahbazian-Yassar, R. Nano Lett. 2015, 15, 2998; (b) Devaraj, S. ; Munichandraiah, N. J. Phys. Chem. C 2008, 112, 4406.

    7. [7]

      Li, L.; Sui, J.; Huang, R.; Xiang, W.; Qin, W. RSC Adv. 2017, 7, 42289.  doi: 10.1039/C7RA07088H

    8. [8]

      Wang, L.; Ma, W.; Han, M.; Meng, C. G. Acta Chim. Sinica 2007, 65, 1135.
       

    9. [9]

      Zhu, L. J.; Zhang, J. C.; Zai, D. X.; Chai, J. J.; Wang, X. J. Saf. Environ. 2007, 7, 20.
       

    10. [10]

      Zhang, P.; He, M.; Xu, S.; Yan, X. J. Mater. Chem. A 2015, 3, 10811.  doi: 10.1039/C5TA00619H

    11. [11]

      Liu, J.; Ge, X.; Ye, X.; Wang, G.; Zhang, H.; Zhou, H.; Zhang, Y.; Zhao, H. J. Mater. Chem. A 2016, 4, 1970.  doi: 10.1039/C5TA08106H

    12. [12]

      Liu, L.; Guo, X.; Tallon, R.; Huang, X.; Chen, J. Chem. Commun. 2017, 53, 881.  doi: 10.1039/C6CC08515F

    13. [13]

      Liu, H.; Hu, Z.; Tian, L.; Su, Y.; Ruan, H.; Zhang, L.; Hu, R. Ceram. Int. 2016, 42, 13519.  doi: 10.1016/j.ceramint.2016.05.144

    14. [14]

      (a) Tansel, B. ; Sager, J. ; Rector, T. ; Garland, J. ; Strayer, R. F. ; Levine, L. ; Roberts, M. ; Hummerick, M. ; Bauer, J. Sep. Purif. Technol. 2006, 51, 40; (b) Volkov, A. G. ; Paula, S. ; Deamer, D. W. Bioelectrochem. Bioenerg. 1997, 42, 153; (c) Nightingale, E. R. J. Phys. Chem. 1959, 63, 1381.

    15. [15]

      Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.  doi: 10.1016/j.desal.2014.11.015

    16. [16]

      Rashid, M.; Price, N. T.; Gracia Pinilla, M. A.; O'Shea, K. E. Water Res. 2017, 123, 353.  doi: 10.1016/j.watres.2017.06.085

    17. [17]

      Wang, X.; Li, Y. Chem. Commun. 2002, (7), 764.  doi: 10.1039/b111723h

    18. [18]

      Wang, X.; Li, Y. Chem.-Eur. J. 2003, 9, 300.  doi: 10.1002/chem.v9:1

    19. [19]

      Zou, X.; Hou, L.; Zou, J. J. Beijing Inst. Technol. 2009, 27, 20.
       

    20. [20]

      Ministry of Environmental Protection of the People's Republic of China, HJ 535-2009, Water Quality-Determination of Ammonia Nitrogen-Nessler's Reagent Spectrophotometry, 2009.

    21. [21]

      Mazloomi, F.; Jalali, M. J. Environ. Chem. Eng. 2016, 4, 240.  doi: 10.1016/j.jece.2015.11.001

    22. [22]

      He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L. Chemosphere 2016, 164, 387.  doi: 10.1016/j.chemosphere.2016.08.110

    23. [23]

      Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.  doi: 10.1016/j.desal.2014.11.015

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(7)
  • Abstract views(1890)
  • HTML views(342)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return