Citation: Sun Mengjia, Wu Tianyi, Li Tianyu, Guo Fengqiao, Tang Yang, Mo Hengliang, Yang Zhitao, Wan Pingyu. Research on High Performance Ammonium Removal Materials Based on δ-MnO2 Nanoplate Arrays Decorated Graphite Felt[J]. Acta Chimica Sinica, ;2018, 76(6): 467-474. doi: 10.6023/A18020069 shu

Research on High Performance Ammonium Removal Materials Based on δ-MnO2 Nanoplate Arrays Decorated Graphite Felt

  • Corresponding author: Wan Pingyu, pywan@mail.buct.edu.cn
  • Received Date: 10 February 2018
    Available Online: 3 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21506010) and the Beijing Natural Science Foundation (No. 2182050)the Beijing Natural Science Foundation 2182050the National Natural Science Foundation of China 21506010

Figures(9)

  • We synthesized three kinds of MnO2 powder with different crystalline phases including α-MnO2 nanoflowers, β-MnO2 nanorods and δ-MnO2 micro-particles. The structure and morphology of prepared MnO2 were studied by XRD (X-ray diffraction), SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) and XPS (X-ray photoelectron spectroscopy), systematically. Adsorption process was conducted in NH4Cl solution (40 mg·L-1 NH3-N) and actual water samples containing NH4+, Ca2+, Mg2+, K+ and Na+, respectively. The results demonstrate that δ-MnO2 with 7.2 Å interlayer spacing which is a little larger than the diameter of hydrated ammonium (6.62 Å) has high adsorption capacity; α-MnO2 with[2×2] tunnel of 4.6 Å has less adsorption capacity than that of δ-MnO2, and β-MnO2 whose[1×1] tunnel is just 1.89 Å, barely has adsorption capacity. Then MnO2NPs/GF (MnO2 nanoplates decorated graphite felt) was prepared via a facile in-situ redox process. Graphite felt (GF) was immersed in KMnO4 solution (4 g·L-1, pH=2) at 65℃ for 5 h to get MnO2NPs/GF. GF not only reacted as the reductant of KMnO4, but also acted as 3D framework to support the in-situ deposited MnO2NPs. MnO2NPs/GF shows high adsorption capacity (15 mg·g-1) and good selectivity (86.7%). In repetitive adsorption-desorption experiments, MnO2NPs/GF not only exhibits good stability after 20 cycles, but also decreases the concentration of NH3-N to as low as 1 mg·L-1. The thermodynamics experiment demonstrates that the adsorption isotherm fit well with Langmuir isotherm, and the adsorption process corresponds to the pseudo-second-order model. The excellent performance of MnO2NPs/GF is attributed to the following three aspects. Firstly, the 7.2 Å interlayer spacing of δ-MnO2 is suitable for the exchange-adsorption of NH4+. Secondly, the ultra-thin MnO2 nanoplate arrays, which vertically grow on the graphite felt substrate, provide fast path and convenient interface for ion exchange. Finally, the interlaced nanoplates with self-supported structure ensure its high stability. In a conclusion, MnO2NPs/GF has a bright future in the field of ammonium removal.
  • 加载中
    1. [1]

      Origin water, Origin water is a practitioner of "Class Ⅳ water" standard and a leader of MBR technique, new normal 036/14/2016, http://www.originwater.com/cpyjs/MF/jslt/5613.html

    2. [2]

      (a) Guaya, D. ; Valderrama, C. ; Farran, A. ; Cortina, J. L. J. Chem. Technol. Biotechnol. 2016, 91, 1737; (b) Thornton, A. ; Pearce, P. ; Parsons, S. A. Water Res. 2007, 41, 433; (c) Montegut, G. ; Michelin, L. ; Brendle, J. ; Lebeau, B. ; Patarin, J. J. Environ. Manage. 2016, 167, 147; (d) Zieliński, M. ; Zielińska, M. ; Dębowski, M. Desalin. Water Treat. 2016, 57, 8748.

    3. [3]

      (a) Moussavi, G. ; Talebi, S. ; Farohki, M. ; Mojtabaee Sabouti, R. Desalin. Water Treat. 2013, 51, 5710; (b) Langwaldt, J. Sep. Sci. Technol. 2008, 43, 2166; (c) Wang, Y. F. Adv. Mater. Res. 2012, 554-556, 2031.

    4. [4]

    5. [5]

      Li, X.-J.; Zhao, Y.; Chu, W.-G.; Wang, Y.; Li, Z.-J.; Jiang, P.; Zhao, X.-C.; Liang, M.; Liu, Y. RSC Adv. 2015, 5, 77437.  doi: 10.1039/C5RA15146E

    6. [6]

      (a) Yuan, Y. ; Nie, A. ; Odegard, G. M. ; Xu, R. ; Zhou, D. ; Santhanagopalan, S. ; He, K. ; Asayesh-Ardakani, H. ; Meng, D. D. ; Klie, R. F. ; Johnson, C. ; Lu, J. ; Shahbazian-Yassar, R. Nano Lett. 2015, 15, 2998; (b) Devaraj, S. ; Munichandraiah, N. J. Phys. Chem. C 2008, 112, 4406.

    7. [7]

      Li, L.; Sui, J.; Huang, R.; Xiang, W.; Qin, W. RSC Adv. 2017, 7, 42289.  doi: 10.1039/C7RA07088H

    8. [8]

      Wang, L.; Ma, W.; Han, M.; Meng, C. G. Acta Chim. Sinica 2007, 65, 1135.
       

    9. [9]

      Zhu, L. J.; Zhang, J. C.; Zai, D. X.; Chai, J. J.; Wang, X. J. Saf. Environ. 2007, 7, 20.
       

    10. [10]

      Zhang, P.; He, M.; Xu, S.; Yan, X. J. Mater. Chem. A 2015, 3, 10811.  doi: 10.1039/C5TA00619H

    11. [11]

      Liu, J.; Ge, X.; Ye, X.; Wang, G.; Zhang, H.; Zhou, H.; Zhang, Y.; Zhao, H. J. Mater. Chem. A 2016, 4, 1970.  doi: 10.1039/C5TA08106H

    12. [12]

      Liu, L.; Guo, X.; Tallon, R.; Huang, X.; Chen, J. Chem. Commun. 2017, 53, 881.  doi: 10.1039/C6CC08515F

    13. [13]

      Liu, H.; Hu, Z.; Tian, L.; Su, Y.; Ruan, H.; Zhang, L.; Hu, R. Ceram. Int. 2016, 42, 13519.  doi: 10.1016/j.ceramint.2016.05.144

    14. [14]

      (a) Tansel, B. ; Sager, J. ; Rector, T. ; Garland, J. ; Strayer, R. F. ; Levine, L. ; Roberts, M. ; Hummerick, M. ; Bauer, J. Sep. Purif. Technol. 2006, 51, 40; (b) Volkov, A. G. ; Paula, S. ; Deamer, D. W. Bioelectrochem. Bioenerg. 1997, 42, 153; (c) Nightingale, E. R. J. Phys. Chem. 1959, 63, 1381.

    15. [15]

      Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.  doi: 10.1016/j.desal.2014.11.015

    16. [16]

      Rashid, M.; Price, N. T.; Gracia Pinilla, M. A.; O'Shea, K. E. Water Res. 2017, 123, 353.  doi: 10.1016/j.watres.2017.06.085

    17. [17]

      Wang, X.; Li, Y. Chem. Commun. 2002, (7), 764.  doi: 10.1039/b111723h

    18. [18]

      Wang, X.; Li, Y. Chem.-Eur. J. 2003, 9, 300.  doi: 10.1002/chem.v9:1

    19. [19]

      Zou, X.; Hou, L.; Zou, J. J. Beijing Inst. Technol. 2009, 27, 20.
       

    20. [20]

      Ministry of Environmental Protection of the People's Republic of China, HJ 535-2009, Water Quality-Determination of Ammonia Nitrogen-Nessler's Reagent Spectrophotometry, 2009.

    21. [21]

      Mazloomi, F.; Jalali, M. J. Environ. Chem. Eng. 2016, 4, 240.  doi: 10.1016/j.jece.2015.11.001

    22. [22]

      He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L. Chemosphere 2016, 164, 387.  doi: 10.1016/j.chemosphere.2016.08.110

    23. [23]

      Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.  doi: 10.1016/j.desal.2014.11.015

  • 加载中
    1. [1]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    11. [11]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    16. [16]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(7)
  • Abstract views(2109)
  • HTML views(406)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return