Citation: Huang Pei-Qiang. Direct Transformations of Amides: Tactics and Recent Progress[J]. Acta Chimica Sinica, ;2018, 76(5): 357-365. doi: 10.6023/A18020054 shu

Direct Transformations of Amides: Tactics and Recent Progress

  • Corresponding author: Huang Pei-Qiang, pqhuang@xmu.edu.cn
  • Received Date: 2 February 2018
    Available Online: 12 May 2018

    Fund Project: the National Natural Science Foundation of China 21472153the National Natural Science Foundation of China 21332007the National Natural Science Foundation of China 21672176the National Key R & D Program of China 2017YFA0207302Chinese Universities Scientific Fund 20720170092Project supported by the National Key R & D Program of China (grant No. 2017YFA0207302), the National Natural Science Foundation of China (Nos. 21332007, 21472153, 21672176), the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education (P. R. China), and Chinese Universities Scientific Fund (No. 20720170092)

Figures(12)

  • Amides are a class of easily available compounds, and widely serve as versatile intermediates in organic synthesis and medicinal chemistry. Amide-based transformations could lead to many useful compounds and intermediates including various amines, ketones and enaminones. Though direct transformation of amides is of high demand, many current chemoselective transformations are only achieved in multistep approaches. In recent years, direct transformation of amides is emerging as an exciting area. A number of recent progresses on nucleophilic addition to amide carbonyl group that led to new C—C bond formation are highlighted in this review, including (1) in situ amide activation with trifluoromethanesulfonic anhydride (Tf2O) followed by addition of π- and σ-nucleophiles or reactive organometallic reagents; (2) direct transformation of N-alkoxyamides; (3) direct transformation of amides using Schwartz reagent; and (4) catalytic reductive C—C bond forming reactions of amides, and metal catalyzed coupling of amides.
  • 加载中
    1. [1]

      Brown, R. S. In The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, Eds. : Greenberg, A. ; Breneman, C. M. ; Liebman, J. F., John Wiley & Sons, Hoboken, 2000, pp. 85~114.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Seyden-Penne, J. Reductions by the Alumino-and Borohydrides in Organic Synthesis, 2nd ed., Wiley-VCH, New York, 1997.

    6. [6]

      Li, J. ; Zhang, W. H. ; Zhang, F. ; Chen, Y. ; Li, A. J. Am. Chem. Soc. 2017, 139, 14893. correction: J. Am. Chem. Soc. 2018, 140, 2384.

    7. [7]

      (a) Mateo, P. ; Cinqualbre, J. ; Mojzes, M. M. ; Schenk, K. ; Renaud, P. J. Org. Chem. 2017, 82, 12318. See also: (b) Murai, T. ; Mutoh, Y. ; Ohta, Y. ; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968. For a review, see: (c) Murai, T. ; Mutoh, Y. Chem. Lett. 2012, 41, 2.

    8. [8]

      (a) Abels, F. ; Lindemann, C. ; Koch, E. ; Schneider, C. Org. Lett. 2012, 14, 5972. (b) Abels, F. ; Lindemann, C. ; Schneider, C. Chem. -Eur. J. 2014, 20, 1964.

    9. [9]

      Lee, A. S.; Liau, B. B.; Shair, M. D. J. Am. Chem. Soc. 2014, 136, 13442.  doi: 10.1021/ja507740u

    10. [10]

      Michael, J. P.; de Koning, C. B.; Gravestock, D.; Hosken, G. D.; Howard, A. S.; Jungmann, C. M.; Krause, R. W. M.; Parsons, A. S.; Pelly, S. C.; Stanbury, T. V. Pure Appl. Chem. 1999, 71, 979.  doi: 10.1351/pac199971060979

    11. [11]

      Hussaini, S. R.; Chamala, R. R.; Wang, Z. Tetrahedron 2015, 71, 6017.  doi: 10.1016/j.tet.2015.06.026

    12. [12]

    13. [13]

      (a) Stang, P. J. ; White, M. R. Aldrichim. Acta 1983, 16, 15. (b) Baraznenok, I. L. ; Nenajdenko, V. G. ; Balenkova, E. S. Tetrahedron 2000, 56, 3077. For an excellent mechanistic investigation on the role of base additive in conjuction with Tf2O, see: (c) Mátravö lgyi, B. ; Hergert, T. ; Bálint, E. ; Bagi, P. ; Faigl, F. J. Org. Chem. 2018, 83, 2282.

    14. [14]

      (a) Falmagne, J. B. ; Escudero, J. ; Talebsahraoui, S. ; Ghosez, L. Angew. Chem. Int. Ed. Engl. 1981, 20, 879. (b) Chen, L. Y. ; Ghosez, L. Tetrahedron Lett. 1990, 31, 4467.

    15. [15]

      Martinez, A. G.; Alvarez, R. M.; Barcina, J. O.; Cerero, S. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L. R. J. Chem. Soc., Chem. Commun. 1990, 1571.
       

    16. [16]

      Sisti, N. J.; Fowler, F. W.; Grierson, D. S. Synlett 1991, 816.
       

    17. [17]

      Banwell, M. G.; Cowden, C. J.; Gable, R. W. J. Chem. Soc., Perkin Trans. 1 1994, 3515.
       

    18. [18]

      Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 6072.  doi: 10.1021/ja9703741

    19. [19]

      (a) Magnus, P. ; Gazzard, L. ; Hobson, L. ; Payne, A. H. ; Lynch, V. Tetrahedron Lett. 1999, 40, 5135. (b) Magnus, P. ; Gazzard, L. ; Hobson, L. ; Payne, A. H. ; Rainey, T. J. ; Westlund, N. ; Lynch, V. Tetrahedron 2002, 58, 3423.

    20. [20]

      (a) Bélanger, G. ; Larouche-Gauthier, R. ; Ménard, F. ; Nantel, M. ; Barabé, F. Org. Lett. 2005, 7, 4431. (b) Bélanger, G. ; Larouche-Gauthier, R. ; Ménard, F. ; Nantel, M. ; Barabé, F. J. Org. Chem. 2006, 71, 704.

    21. [21]

      (a) Movassaghi, M. ; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592. (b) Movassaghi, M. ; Hill, M. D. ; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096.

    22. [22]

      Hendrickson, J. B.; Hussoin, M. D. J. Org. Chem. 1987, 52, 4137.  doi: 10.1021/jo00227a041

    23. [23]

      (a) You, S. L. ; Razavi, H. ; Kelly, J. W. Angew. Chem., Int. Ed. 2003, 42, 83; (b) You, S. -L. ; Kelly, J. W. Org. Lett. 2004, 6, 1681.

    24. [24]

      (a) Zhou, H. B. ; Liu, G. S. ; Yao, Z. J. Org. Lett. 2007, 9, 2003. (b) Atia, M. ; Bogdán, D. ; Brügger, M. ; Haider, N. ; Mátyus, P. Tetrahedron 2017, 73, 3231. (c) Dong, Q. L. ; Liu, G. S. ; Zhou, H. B. ; Chen, L. ; Yao, Z. J. Tetrahedron Lett. 2008, 49, 1636.

    25. [25]

      Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485.  doi: 10.1021/ol801264u

    26. [26]

      Cui, S. L.; Wang, J.; Wang, Y. G. J. Am. Chem. Soc. 2008, 130, 13526.  doi: 10.1021/ja805706r

    27. [27]

      Medley, J. W.; Movassaghi, M. J. Org. Chem. 2009, 74, 1341.  doi: 10.1021/jo802355d

    28. [28]

      (a) White, K. L. ; Mewald, M. ; Movassaghi, M. J. Org. Chem. 2015, 80, 7403. (b) Mewald, M. ; Medley, J. W. ; Movassaghi, M. Angew. Chem., Int. Ed. 2014, 53, 11634.

    29. [29]

      (a) Handbook of Grignard Reagents, Eds. : Silverman, G. S. ; Rakita, P. E., Marcel Dekker, New York, 1996; (b) Grignard Reagent: New Developments, Ed. : Richey, H. G. Jr., Wiley, Chichester, 2000; (c) Main Group Metals in Organic Synthesis, Eds. : Yamamoto, H. ; Oshima, K., Wiley-VCH, Weinheim, 2004; (d) Handbook of Functionalized Organometallics Application in Synthesis, Ed. : Knochel, P., Wiley-VCH, Weinheim, 2005; (e) Klatt, T. ; Markiewicz, J. T. ; Sä mann, C. ; Knochel, P. J. Org. Chem. 2014, 79, 4253; (f) Bao, R. L. -Y. ; Zhao, R. ; Shi, L. Chem. Commun. 2015, 51, 6884, correction: Chem. Commun. 2015, 51, 9744.

    30. [30]

      (a) Foubelo, F. ; Yus, M. Chem. Soc. Rev. 2008, 37, 2620; (b) Chinchilla, R. ; Nájera, C. ; Yus, M. Tetrahedron 2005, 61, 3139; (c) The Chemistry of Organolithium Compounds, Eds. : Rappoport, Z. ; Marek, I., Wiley-VCH, Weinheim, 2004.

    31. [31]

      (a) Xiao, K. -J. ; Luo, J. -M. ; Ye, K. -Y. ; Wang, Y. ; Huang, P. -Q. Angew. Chem., Int. Ed. 2010, 49, 3037. (b) Huo, H. -H. ; Luo, J. -M. ; Xia, X. -E. ; Zhang, H. -K. ; Wang, Y. ; Huang, P. -Q. Chem. Eur. J. 2013, 19, 13075.

    32. [32]

      (a) Xiao, K. -J. ; Wang, Y. ; Ye, K. -Y. ; Huang, P. -Q. Chem. Eur. J. 2010, 16, 12792. (b) Xiao, K. -J. ; Wang, Y. ; Huang, Y. -H. ; Wang, X. -G. ; Huang, P. -Q. J. Org. Chem. 2013, 78, 8305.

    33. [33]

      (a) Guérot, C. ; Tchitchanov, B. H. ; Knust, H. ; Carreira, E. M. Org. Lett. 2011, 13, 780. (b) Lindemann, C. ; Schneider, C. Synthesis 2016, 48, 828.

    34. [34]

      (a) Huo, H. -H. ; Xia, X. -E. ; Zhang, H. -K. ; Huang, P. -Q. J. Org. Chem. 2013, 78, 455. (b) Huang, P. -Q. ; Geng, H. ; Tian, Y. -S. ; Peng, Q. -R. ; Xiao, K. -J. Sci. China: Chem. 2015, 58, 478.

    35. [35]

      Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.  doi: 10.1038/nchem.1268

    36. [36]

      (a) Xiao, K. -J. ; Wang, A. -E; Huang, Y. -H. ; Huang, P. -Q. Asian J. Org. Chem. 2012, 1, 130. (b) Huang, P. -Q. ; Huang, Y. -H. ; Geng, H. ; Ye, J. -L. Sci. Rep. 2016, 6, 28801. (c) Huang, P. -Q. ; Huang, Y. -H. Chin. J. Chem. 2017, 35, 613.

    37. [37]

      Xiao, K.-J.; Wang, A.-E; Huang, P.-Q. Angew. Chem. Int. Ed. 2012, 51, 8314.  doi: 10.1002/anie.v51.33

    38. [38]

      Huang, P.-Q.; Ou, W.; Xiao, K.-J.; Wang, A.-E Chem. Commun. 2014, 50, 8761.  doi: 10.1039/C4CC03826F

    39. [39]

      Huang, P.-Q.; Wang, Y.; Xiao, K.-J.; Huang, Y.-H. Tetrahedron 2015, 71, 4248.  doi: 10.1016/j.tet.2015.04.074

    40. [40]

      (a) Castoldi, L. ; Holzer, W. ; Langer, T. ; Pace, V. Chem. Commun. 2017, 53, 9498. (b) Pace, V. ; Murgia, I. ; Westermayer, S. ; Langer, T. ; Holzer, W. Chem. Commun. 2016, 52, 7584.

    41. [41]

      (a) Shirokane, K. ; Kurosaki, Y. ; Sato, T. ; Chida, N. Angew. Chem. Int. Ed. 2010, 49, 6369. (b) Yoritate, M. ; Meguro, T. ; Matsuo, N. ; Shirokane, K. ; Kurosaki, Y. ; Sato, T. ; Chida, N. Chem. Eur. J. 2014, 20, 8210. See also: (c) Jaekel, M. ; Qu, J. ; Schnitzer, T. ; Helmchen, G. Chem. Eur. J. 2013, 19, 16746.

    42. [42]

      (a) Vincent, G. ; Guillot, R. ; Kouklovsky, C. Angew. Chem. Int. Ed. 2011, 50, 1350. (b) Vincent, G. ; Karila, D. ; Khalil, G. ; Sancibrao, P. ; Gori, D. ; Kouklovsky, C. Chem. -Eur. J. 2013, 19, 9358.

    43. [43]

      (a) Schedler, D. J. A. ; Godfrey, A. G. ; Ganem, B. Tetrahedron Lett. 1993, 34, 5035. (b) Schedler, D. J. A. ; Li, J. ; Ganem, B. J. Org. Chem. 1996, 61, 4115. (c) Xia, Q. ; Ganem, B. Org. Lett. 2001, 3, 485.

    44. [44]

      (a) Nakajima, M. ; Oda, Y. ; Wada, T. ; Minamikawa, R. ; Shirokane, K. ; Sato, T. ; Chida, N. Chem. Eur. J. 2014, 20, 17565. (b) Oda, Y. ; Sato, T. ; Chida, N. Org. Lett. 2012, 14, 950. (c) Shirokane, K. ; Wada, T. ; Yoritate, M. ; Minamikawa, R. ; Takayama, N. ; Sato, T. ; Chida, N. Angew. Chem. Int. Ed. 2014, 53, 512. (d) Fukami, Y. ; Wada, T. ; Meguro, T. ; Chida, N. ; Sato, T. Org. Biomol. Chem. 2016, 14, 5486. (e) Shirokane, K. ; Tanaka, Y. ; Yoritate, M. ; Takayama, N. Sato, T. ; Chida, N. Bull. Chem. Soc. Jpn. 2015, 88, 522. See also: (f) Pace, V. ; Vega-Hernández, K. de la; Urban, E. ; Langer, T. Org. Lett. 2016, 18, 2750.

    45. [45]

      Więcław, M. M.; Stecko, S. Eur. J. Org. Chem. 2018, DOI:10.1002/ejoc.201701537  doi: 10.1002/ejoc.201701537

    46. [46]

      Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574.
       

    47. [47]

      (a) Gregory, A. W. ; Chambers, A. ; Hawkins, P. ; Jakubec, A. ; Dixon, D. J. Chem. -Eur. J. 2015, 21, 111. (b) Tan, P. W. ; Seayad, J. ; Dixon, D. J. Angew. Chem. Int. Ed. 2016, 55, 13436.

    48. [48]

      (a) Nakajima, M. ; Sato, T. ; Chida, N. Org. Lett. 2015, 17, 1696. (b) Katahara, S. ; Kobayashi, S. ; Fujita, K. ; Matsumoto, T. ; Sato, T. ; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246. (c) Katahara, S. ; Kobayashi, S. ; Fujita, K. ; Matsumoto, T. ; Sato, T. ; Chida, N. Bull. Chem. Soc. Jpn. 2017, 90, 893.

    49. [49]

      Huang, P.-Q.; Ou, W.; Han, F. Chem. Commun. 2016, 52, 11967.  doi: 10.1039/C6CC05318A

    50. [50]

      (a) Fuentes de Arriba, A. L. ; Lenci, E. ; Sonawane, M. ; Formery, O. ; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 3655. (b) Xie, L. G. ; Dixon, D. J. Chem. Sci. 2017, 8, 7492.

    51. [51]

      (a) Tinnis, F. ; Volkov, A. ; Slagbrand, T. ; Adolfsson, H. Angew. Chem., Int. Ed. 2016, 55, 4562. (b) Slagbrand, T. ; Kervefors, G. ; Tinnis. F. ; Adolfsson, H. Adv. Synth. Catal. 2017, 359, 1990. (c) Trillo, P. ; Slagbrand, T. ; Tinnis F. ; Adolfsson, H. Chem. Commun. 2017, 53, 9159.

    52. [52]

      Hie, L.; Fine Nathel, N. F.; Shah, T.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.  doi: 10.1038/nature14615

    53. [53]

      Ritter, S. K. Chem. Eng. News 2015, 93(49), 23.
       

    54. [54]

      (a) Ritter, S. K. Chem. Eng. News Archive 2015, 93(30), 9. (b) Ruider, S. A. ; Maulide, N. Angew. Chem. Int. Ed. 2015, 54, 13856.

    55. [55]

      Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.  doi: 10.1038/nchem.2388

    56. [56]

      Meng, G.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 3596.  doi: 10.1021/acs.orglett.7b01575

    57. [57]

      Huang, P.-Q.; Chen, H. Chem. Commun. 2017, 53, 12584.  doi: 10.1039/C7CC07457C

    58. [58]

      (a) Kaiser, D. ; Teskey, C. J. ; Adler, P. ; Maulide, N. J. Am. Chem. Soc. 2017, 139, 16040. (b) Shaaban, S. ; Tona, V. ; Peng, B. ; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 10938. (c) Torre, A. ; Kaiser, D. ; Maulide, N. J. Am. Chem. Soc. 2017, 139, 6578. (d) Kaiser, D. ; de la Torre, A. ; Shaaban, S. ; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 5921. (e) Mauro, G. D. ; Maryasin, B. ; Kaiser, D. ; Shaaban, S. ; González, L. ; Maulide, N. Org. Lett. 2017, 19, 3815. (f) Tona, V. ; Maryasin, B. ; de la Torre, A. ; Sprachmann, J. ; González, L. ; Maulide, N. Org. Lett. 2017, 19, 2662. (g) Gawali, V. S. ; Simeonov, S. ; Drescher, M. ; Knott, T. ; Scheel, O. ; Kudolo, J. ; Kä hlig, H. ; Hochenegg, K. ; Hochenegg, U. ; Roller, A. ; Todt, H. ; Maulide, N. ChemMedChem 2017, 12, 1819. (h) Peng, B. ; Geerdink, D. ; Fares, C. ; Maulide, N. Angew. Chem. Int. Ed. 2014, 53, 5462.

    59. [59]

      (a) Xiao, P. H. ; Tang, Z. X. ; Wang, K. ; Chen, H. ; Guo, Q. Y. ; Chu, Y. ; Gao, L. ; Song, Z. L. J. Org. Chem. 2018, 83, 1687. (b) Li, L. H. ; Niu, Z. J. ; Liang, Y. M. Chem. Eur. J. 2017, 23, 15300. (c) Li, X. W. ; Lin, F. G. R. ; Huang, K. M. ; Wei, J. L. ; Li, X. Y. ; Wang, X. Y. ; Geng, X. Y. ; Jiao, N. Angew. Chem. Int. Ed. 2017, 56, 12307. (d) Xie, C. M. ; Luo, J. S. ; Zhang, Y. ; Zhu, L. L. ; Hong, R. Org. Lett. 2017, 19, 3592. (e) Chen, J. J. ; Long, W. H. ; Fang, S. W. ; Yang, Y. G. ; Wan, X. B. Chem. Commun. 2017, 53, 13256. (f) Ding, G. N. ; Wu, X. Y. ; Jiang, L. L. ; Zhang, Z. G. ; Xie, X. M. Org. Lett. 2017, 19, 6048. (g) Zhang, Q. ; Yuan, J. W. ; Yu, M. F. ; Zhang, R. ; Liang, Y. J. ; Huang, P. ; Dong, D. W. Synthesis 2017, 49, 4996. (h) Jiang Meng, J. ; Jia, R. ; Leng, J. ; Wen, M. ; Yu, X. ; Deng, W. -P. Org. Lett. 2017, 19, 4520. (i) Shi, L. ; Tan, X. ; Long, J. ; Xiong, X. ; Yang, S. ; Xue, P. ; Lv, H. ; Zhang, X. Chem. -Eur. J. 2017, 23, 546. (j) Yuan, M. L. ; Xie, J. H. ; Zhou, Q. L. ChemCatChem 2016, 8, 3036. (k) Yuan, M. L. ; Xie, J. H. ; Zhu, S. F. ; Zhou, Q. L. ACS Catal. 2016, 6, 3665. (l) Xing, S. Y. ; Ren, J. ; Wang, K. ; Cui, H. ; Xia, T. ; Zhang, M. ; Wang, D. D. Adv. Synth. Catal. 2016, 358, 3093. (m) Lang, Q. -W. ; Hu, X. -N. ; Huang, P. -Q. Sci. China: Chem. 2016, 59, 1638. (n) Mou, X. Q. ; Xu, L. ; Wang, S. H. ; Yang, C. Tetrahedron Lett. 2015, 56, 2820. (o) Zhang, T. X. ; Zhang, Y. ; Zhang, W. X. ; Luo, M. -M. Adv. Synth. Catal. 2013, 355, 2775. (p) Xie, W. ; Zhao, M. ; Cui, C. Organometallics 2013, 32, 7440. (q) Zhao, M. N. ; Ren, Z. H. ; Wang, Y. Y. ; Guan, Z. H. Chem. Commun. 2012, 48, 8105.

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    4. [4]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    5. [5]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    6. [6]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    7. [7]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    12. [12]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    18. [18]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    19. [19]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    20. [20]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

Metrics
  • PDF Downloads(146)
  • Abstract views(3532)
  • HTML views(1257)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return