Citation: Yan Tingting, Xing Guolong, Ben Teng. One-step Strategy to Synthesize Porous Carbons by Carbonized Porous Organic Materials and Their Applications[J]. Acta Chimica Sinica, ;2018, 76(5): 366-376. doi: 10.6023/A18020050 shu

One-step Strategy to Synthesize Porous Carbons by Carbonized Porous Organic Materials and Their Applications

  • Corresponding author: Ben Teng, tben@jlu.edu.cn
  • Received Date: 1 February 2018
    Available Online: 9 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21390394, 21471065) and the "111" project (No. B07016)the National Natural Science Foundation of China 21471065the National Natural Science Foundation of China 21390394the "111" project B07016

Figures(10)

  • It is an effective way to solve the problems of environmental pollution and energy shortage by exploring and utilizing clean, renewable energy. Porous carbons which prepared by carbonized porous organic materials with high carbon content, have high specific surface area, good physical and chemical stability, and excellent mechanical performance, generally higher conductivity, therefore can be widely used in many fields, such as clean energy storage, different gases separation, and energy storage and conversion, etc. The common methods for preparing porous carbon from porous organic materials are divided into non-activated carbonization and activation carbonization. The morphology and pore structure of porous carbons which prepared by different preparation methods are different. The structure properties of porous carbon materials can affect their application. Reasonable design and utilization of the "pore" of porous carbon, displaying "sieving effect" of pore size can effectively store and separate the gas molecules. In the field of energy storage and conversion, such as lithium battery, the "confinement effect" is an important factor that affects the electrical performance of lithium battery. The smaller pores in the porous carbon materials can limited the active components, while the larger pores are in favor of rapidly diffusion, the synergistic effect of the two different type pores can greatly improve the electrical performance of lithium battery. This review systematically summarize the preparation methods of porous carbons derived from porous organic materials, and a brief comparison of different methods for preparing porous carbon is presented which proved that carbonized porous organic materials is a simple, efficient, environmentally friendly, and controllable pore structure method for the preparation of porous carbon with excellent performance. Then, the review describes in detail about the application of porous carbons in gas adsorption, storage, separation, energy storage and conversion. At the last, combination with the research status of porous carbons, the review points out the challenges for porous carbons, and also prospects the application of porous carbons.
  • 加载中
    1. [1]

      Liu, T. Y.; Zhang, F.; Song, Y.; Li, Y. J. Mater. Chem. A 2017, 5, 17705.  doi: 10.1039/C7TA05646J

    2. [2]

      Xia, Y. D.; Yang, Z. X.; Zhu, Y. Q. J. Mater. Chem. A 2013, 1, 9365.  doi: 10.1039/c3ta10583k

    3. [3]

      Kyotani, T. Carbon 2000, 38, 269.  doi: 10.1016/S0008-6223(99)00142-6

    4. [4]

      Yang, Y. F.; Jin, S.; Zhang, Z.; Du, Z. Z.; Liu, H. R.; Yang, J.; Xu, H. X.; Ji, H. X. ACS Appl. Mater. Interfaces 2017, 9, 14180.  doi: 10.1021/acsami.6b14840

    5. [5]

      Yang, K.; Jiang, P.; Chen, J. T.; Chen, Q. W. ACS Appl. Mater. Interfaces 2017, 9, 32106.  doi: 10.1021/acsami.7b09428

    6. [6]

      Dutta, S.; Bhaumik, A.; Wu, K. C. W. Energy Environ. Sci. 2014, 7, 3574.  doi: 10.1039/C4EE01075B

    7. [7]

      Jiang, M.; Zhang, J. L.; Xing, L. B.; Zhou, J.; Cui, H. Y.; Si, W. J.; Zhuo, S. P. Chin. J. Chem. 2016, 34, 1093.  doi: 10.1002/cjoc.v34.11

    8. [8]

      Hong, S. M.; Choi, S. W.; Kim, S. H.; Lee, K. B. Carbon 2016, 99, 354.  doi: 10.1016/j.carbon.2015.12.012

    9. [9]

      Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130, 5390.  doi: 10.1021/ja7106146

    10. [10]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
       

    11. [11]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    12. [12]

      Pei, X. K.; Chen, Y. F.; Li, S. Q.; Zhang, S. H.; Feng, X.; Zhou, J. W.; Wang, B. Chin. J. Chem. 2016, 34, 157.  doi: 10.1002/cjoc.v34.2

    13. [13]

      Lu, S. L.; Jin, Y. H.; Gu, H. W.; Zhang, W. Sci. China. Chem. 2017, 60, 999.  doi: 10.1007/s11426-017-9078-7

    14. [14]

      Sun, J. K.; Xu, Q. Energy Environ. Sci. 2014, 7, 2071.  doi: 10.1039/c4ee00517a

    15. [15]

      Wood, C. D.; Tan, B. E.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel, E.; Cooper, A. I. Chem. Mater. 2007, 19, 2034.  doi: 10.1021/cm070356a

    16. [16]

      Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I. Adv. Mater. 2008, 20, 1916.  doi: 10.1002/(ISSN)1521-4095

    17. [17]

      McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.  doi: 10.1039/b600349d

    18. [18]

      McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Chem. Eur. J. 2005, 11, 2610.  doi: 10.1002/(ISSN)1521-3765

    19. [19]

      Côté, A. P.; Benin, A. I.; Ockwing, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    20. [20]

      Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570.  doi: 10.1021/ja8096256

    21. [21]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.  doi: 10.1002/anie.v46:45

    22. [22]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Niu, H.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. J. Am. Chem. Soc. 2008, 130, 8875.
       

    23. [23]

      Xu, J. W.; Zhang, C.; Wang, X. C.; Jiang, J. X.; Wang, F. Acta Chim. Sinica 2017, 75, 473.
       

    24. [24]

      Kuhn, P.; Thomas, A.; Antonietti, M. Macromolecules 2009, 42, 319.  doi: 10.1021/ma802322j

    25. [25]

      Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47, 3450.  doi: 10.1002/(ISSN)1521-3773

    26. [26]

      Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Energy Environ. Sci. 2011, 4, 3991.  doi: 10.1039/c1ee01222c

    27. [27]

      Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F. Angew. Chem. Int. Ed. 2009, 48, 9457.  doi: 10.1002/anie.200904637

    28. [28]

      Yan, Z. J.; Yuan, Y.; Liu, J.; Li, Q.; Nguyen, N. T.; Zhang, D. M.; Tian, Y. Y.; Zhu, G. S. Acta Chim. Sinica 2016, 74, 67.
       

    29. [29]

      Allcock, H. R.; Siegel, L. A. J. Am. Chem. Soc. 1964, 86, 5140.  doi: 10.1021/ja01077a019

    30. [30]

      Sozzani, P.; Comotti, A.; Simonutti, R.; Meersmann, T.; Logan, J. W.; Pines, A. Angew. Chem. Int. Ed. 2000, 112, 2807.  doi: 10.1002/(ISSN)1521-3757

    31. [31]

      Mastalerz, M.; Oppel, I. M. Angew. Chem. Int. Ed. 2012, 51, 5252.  doi: 10.1002/anie.201201174

    32. [32]

      Tozawa1, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A. I. Nature Mater. 2009, 8, 973.  doi: 10.1038/nmat2545

    33. [33]

      Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A.; Thomas, K. M.; Armstrong, J. A.; Bell, J.; Busto, J.; Noel, R.; Liu, J.; Strachan, D. M.; Thallapally, P. K.; Cooper, A. I. Nature Mater. 2014, 13, 954.  doi: 10.1038/nmat4035

    34. [34]

      Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R.; R tzke, K.; Koschine, T.; Pison, L.; Costa Gomes, M. F.; Cooper, A. I.; James, S. L. Nature 2015, 527, 216.  doi: 10.1038/nature16072

    35. [35]

      Ben, T.; Li, Y. Q.; Zhu, L. K.; Zhang, D. L.; Cao, D. P.; Xiang, Z. H.; Yao, X. D.; Qiu, S. L. Energy Environ. Sci. 2012, 5, 8370.  doi: 10.1039/c2ee21935b

    36. [36]

      Li, Y. Q.; Ben, T.; Qiu, S. L. Acta Chim. Sinica 2015, 73, 605.
       

    37. [37]

      Zhang, Y. M.; Li, B. Y.; Williams, K.; Gao, W. Y.; Ma, S. Q. Chem. Commun. 2013, 49, 10269.  doi: 10.1039/c3cc45252b

    38. [38]

      Pachfule, P.; Dhavale, V. M.; Kandambeth, S.; Kurungot, S.; Banerjee, R. Chem. Eur. J. 2013, 19, 974.  doi: 10.1002/chem.201202940

    39. [39]

      Li, Y. Q.; Ben, T.; Zhang, B. Y.; Fu, Y.; Qiu, S. L. Sci. Rep. 2013, 3, 2420.  doi: 10.1038/srep02420

    40. [40]

      Li, Y. Q.; Roy, S.; Ben, T.; Xu, S. X.; Qiu, S. L. Phys. Chem. Chem. Phys. 2014, 16, 12909.  doi: 10.1039/c4cp00550c

    41. [41]

      Dong, Y.; Das, S.; Zhu, L. K.; Ben, T.; Qiu, S. L. J. Mater. Chem. A 2016, 4, 18822.  doi: 10.1039/C6TA09384A

    42. [42]

    43. [43]

      Zhao, W. X.; Han, S.; Zhuang, X. D.; Zhang, F.; Mai, Y. Y.; Feng, X. L. J. Mater. Chem. A 2015, 3, 23352.  doi: 10.1039/C5TA06702B

    44. [44]

      Ashourirad, B.; Sekizkardes, A. K.; Altarawneh, S.; El-Kaderi, H. M. Chem. Mater. 2015, 27, 1349.  doi: 10.1021/cm504435m

    45. [45]

      Yang, X.; Yu, M.; Zhao, Y.; Zhang, C.; Wang, X. Y.; Jiang, J. X. J. Mater. Chem. A 2014, 2, 15139.  doi: 10.1039/C4TA02782E

    46. [46]

      Kou, J. H.; Sun, L. B. J. Mater. Chem. A 2016, 4, 17299.  doi: 10.1039/C6TA07305K

    47. [47]

      Xu, Y. J.; Wu, S. P.; Ren, S. J.; Ji, J. Y.; Yu, Y.; Shen, J. J. RSC Adv. 2017, 7, 32496.  doi: 10.1039/C7RA05551J

    48. [48]

      Gu, S.; He, J. Q.; Zhu, Y. L.; Wang, Z. Q.; Chen, D. Y.; Yu, G. P.; Pan, C. Y.; Guan, J. G.; Tao, K. ACS Appl. Mater. Interfaces 2016, 8, 18383.  doi: 10.1021/acsami.6b05170

    49. [49]

      Alabadi, A.; Abbood, H. A.; Li, Q. Y.; Jing, N.; Tan, B. E. Sci. Rep. 2016, 6, 38614.  doi: 10.1038/srep38614

    50. [50]

      Huang, Y. B.; Pachfule, P.; Sun, J. K.; Xu, Q. J. Mater. Chem. A 2016, 4, 4273.  doi: 10.1039/C5TA10170K

    51. [51]

      Puthiaraj, P.; Ahn, W. S. J. Energ. Chem. 2017, 26, 965.  doi: 10.1016/j.jechem.2017.07.012

    52. [52]

      Lee, Y. J.; Talapaneni, S. N.; Coskun, A. ACS Appl. Mater. Interfaces 2017, 9, 30679.  doi: 10.1021/acsami.7b08930

    53. [53]

      Tian, Z. H.; Huang, J. J.; Zhang, X.; Shao, G. L.; He, Q. Y.; Cao, S. K.; Yuan, S. G. Microporous Mesoporous Mater. 2018, 257, 19.  doi: 10.1016/j.micromeso.2017.08.012

    54. [54]

      Lee, J. S. M.; Briggs, M. E.; Hasell, T.; Cooper, A. I. Adv. Mater. 2016, 28, 9804.  doi: 10.1002/adma.201603051

    55. [55]

      Wang, X. Y.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J. H.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.  doi: 10.1021/acsami.7b05345

    56. [56]

      Feng, X. L.; Liang, Y. Y.; Zhi, L. J.; Thomas, A.; Wu, D. Q.; Lieberwirth, I.; Kolb, U.; Müllen, K. Adv. Funct. Mater. 2009, 19, 2125.  doi: 10.1002/adfm.v19:13

    57. [57]

      Liang, Y. Y.; Feng, X. L.; Zhi, L. J.; Kolb, U.; Müllen, K. Chem. Commun. 2009, 809.
       

    58. [58]

      Hao, L.; Luo, B.; Li, X. L.; Jin, M. H.; Fang, Y.; Tang, Z. H.; Jia, Y. Y.; Liang, M. H.; Thomas, A.; Yang, J. H.; Zhi, L. J. Energy Environ. Sci. 2012, 5, 9747.  doi: 10.1039/c2ee22814a

    59. [59]

      Liu, X. H.; Zhou, L.; Zhao, Y. Q.; Bian, L.; Feng, X. T.; Pu, Q. S. ACS Appl. Mater. Interfaces 2013, 5, 10280.  doi: 10.1021/am403175q

    60. [60]

      Kim, G. Y.; Yang, J.; Nakashima, N.; Shiraki, T. Chem. Eur. J. 2017, 23, 17504.  doi: 10.1002/chem.v23.69

    61. [61]

      Zha, W. L.; Tu, W. L.; Li, Y.; Gao, H. Y.; Yu, J. G.; Zhao, Y. N.; Li, G. D. Electrochim. Acta 2016, 219, 143.  doi: 10.1016/j.electacta.2016.09.133

    62. [62]

      Xiang, Z. H.; Cao, D. P.; Huang, L.; Shui, J. L.; Wang, M.; Dai, L. M. Adv. Mater. 2014, 26, 3315.  doi: 10.1002/adma.v26.20

    63. [63]

      Fan, X. H.; Kong, F. T.; Kong, A. G.; Chen, A. L.; Zhou, Z. Q.; Shan, Y. K. ACS Appl. Mater. Interfaces 2017, 9, 32840.  doi: 10.1021/acsami.7b11229

    64. [64]

      Liao, Y. Z.; Cheng, Z. H.; Zuo, W. W.; Thomas, A.; Faul, C. F. J. ACS Appl. Mater. Interfaces 2017, 9, 38390.  doi: 10.1021/acsami.7b09553

    65. [65]

      Liao, Y. Z.; Weber, J.; Mills, B. M.; Ren, Z. H.; Faul, C. F. J. Macromolecules 2016, 49, 6322.  doi: 10.1021/acs.macromol.6b00901

    66. [66]

      Wang, H. G.; Cheng, Z. H.; Liao, Y. Z.; Li, J. H.; Weber, J.; Thomas, A.; Faul, C. F. J. Chem. Mater. 2017, 29, 4885.  doi: 10.1021/acs.chemmater.7b00857

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(65)
  • Abstract views(3230)
  • HTML views(993)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return