Citation: Xi Zifan, Yuan Fanglong, Wang Zifei, Li Shuhua, Fan Louzhen. Highly Efficient and Stable Full-Color Random Lasing Emission Based on Carbon Quantum Dots[J]. Acta Chimica Sinica, ;2018, 76(6): 460-466. doi: 10.6023/A18020048 shu

Highly Efficient and Stable Full-Color Random Lasing Emission Based on Carbon Quantum Dots

  • Corresponding author: Fan Louzhen, lzfan@bnu.edu.cn
  • Received Date: 1 February 2018
    Available Online: 8 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Key program, No. 21233003; General Program, No. 21573019), and the Fundamental Research Funds for the Central Universities

Figures(7)

  • The emerging fluorescent carbon quantum dots (CQDs) have shown enormous potentials in optoelectronic applications owing to their outstanding characteristics, such as tunable stable fluorescence emission, low cost, and environment-friendliness. However, the fluorescence of most reported CQDs is dominated by surface defects, which are in general energy dissipative, hard to support lasing emission. We have previously reported the bandgap emission CQDs from blue to red with a quantum yield (QY) over 50%, which is the highest value reported for bandgap emission CQDs. The bandgap transitions in CQDs were further confirmed by size-dependent optical properties through tansmission electron microscopy (TEM), which show uniform distribution nanoparticles with averge sizes of about 1.95, 2.41, 5.0 nm for blue, green and red CQDs, and their typical high-resolution TEM (HRTEM) images further indicates that most of the CQDs exhibit uniform atomic arrangements with high degree of crystallinity. By taking advantage of the high QY of CQDs, monochrome CQDs-based random lasing with low excitation threshold have been realized by using Au-Ag bimetallic porous nanowires as scatterers for the first time. The Au-Ag bimetallic porous nanowires possess a rough surface with Au nanoparticles and abundant nanogaps, leading to the extremely broadband surface plasmonic resonance peaks over the whole visible spectral range, which is benefit for efficient random lasing. The thresholds of the monochrome CQDs-based random lasers reached about 0.27, 0.21, 0.58 MW/cm2 for blue, green and red, respectively. The full width at half maximum (FWHM) of the monochrome CQDs-based random lasers reached about 2.5, 1.9, 2.3 nm for blue, green and red, which is even comparable to the well-developed semiconductor QDs-based random lasers. The obtained random lasers show substantial stable emission color, which is of great significance for lasing display and lighting technology. Furthermore, white lasing with a CIE coordinate at (0.32, 0.33) was first demonstrated by combining red, green, blue fluorescent CQDs. This work does serve the purpose of understanding and providing significant opportunities for further improvements of CQDs-based lasers.
  • 加载中
    1. [1]

      Hill, M. T.; Gather, M. C. Nat. Photonics 2014, 8, 908.  doi: 10.1038/nphoton.2014.239

    2. [2]

      Luan, F.; Gu, B.; Gomes, A. S. L; Yong, K. T.; Wen, S. C.; Prasad, P. N. Nano Today 2015, 10, 168.  doi: 10.1016/j.nantod.2015.02.006

    3. [3]

      Wiersma, D. Nat. Phys. 2008, 4, 359.  doi: 10.1038/nphys971

    4. [4]

      Wiersma, D. Nature 2000, 406, 132.
       

    5. [5]

      Wang, Y.; Duan, Z. J.; Qiu, Z.; Zhang, P.; Wu, J. W.; Zhang, D. K.; Xiang, T. X. Sci. Rep. 2017, 7, 8385.  doi: 10.1038/s41598-017-08625-3

    6. [6]

      Polson, R. C.; Vardeny, Z. V. Appl. Phys. Lett. 2004, 85, 1289.  doi: 10.1063/1.1782259

    7. [7]

      Fan, F.; Turkdogan, S.; Liu, Z. C.; Shelhammer, D.; Ning, C. Z. Nat. Nanotechnol. 2015, 10, 796.  doi: 10.1038/nnano.2015.149

    8. [8]

      Liu, Z. C.; Yin, L. J.; Ning, H.; Yang, Z. Y.; Tong, L. M.; Ning, C. Z. Nano Lett. 2013, 13, 4945.  doi: 10.1021/nl4029686

    9. [9]

      Lu, Y. J.; Wang, C. Y.; Kim, J.; Chen, H. Y.; Lu, M. Y.; Chen, Y. C.; Chang, W. H.; Chen, L. J.; Stockman, M. I.; Shih, C. K.; Gwo, S. Nano Lett. 2014, 14, 4381.  doi: 10.1021/nl501273u

    10. [10]

      Cai, P.; Jia, Y.; Feng, X. Y.; Li, J.; Li, J. B. Chin. J. Chem. 2017, 35, 881.  doi: 10.1002/cjoc.v35.6

    11. [11]

      Huang, L. ; Li, Z. C. ; Huang, S. Q. ; Reiss, P. ; Li, L. Acta Chim. Sinica 2017, 75, 300(in Chinese).

    12. [12]

      Shao, Y. B.; Yue, J. L.; Sun, S.; Xia, H. Chin. J. Chem. 2017, 35, 73.  doi: 10.1002/cjoc.v35.1

    13. [13]

      Li, C. L.; Zang, Z. G.; Han, C.; H, Z. P.; Tang, X. S.; Du, J.; Leng, Y. X.; Sun, K. Nano Energy 2017, 40, 195.  doi: 10.1016/j.nanoen.2017.08.013

    14. [14]

      Li, Y. J; Lv, Y. C.; Zou, C. M.; Zhang, W.; Yao, J. N.; Zhao, Y. S. J. Am. Chem. Soc. 2016, 138, 2122.  doi: 10.1021/jacs.5b12755

    15. [15]

      Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. Z.; Mathews, N.; Mhaisalkar, S. G. Adv. Mater. 2016, 28, 6804.  doi: 10.1002/adma.201600669

    16. [16]

      Rauter, P.; Capasso, F. Laser Photonics Rev. 2015, 11, 565.
       

    17. [17]

      Li, T. F.; Li, Y. W.; Xiao, L.; Yu, H. T.; Fan, L. Z. Acta Chim. Sinica 2014, 72, 227(in Chinese).  doi: 10.3866/PKU.WHXB201312161
       

    18. [18]

      Du, F. K.; Xu, J. S.; Zeng, F.; Wu, S, Z. Acta Chim. Sinica 2016, 74, 241(in Chinese).
       

    19. [19]

      Li, S. H.; Zhou, S. X.; Li, Y. C.; Li, X. H.; Zhu, J.; Fan, L. Z.; Yang, S. H. ACS Appl. Mater. Interfaces 2017, 9, 22332.  doi: 10.1021/acsami.7b07267

    20. [20]

      Liu, Y. T.; Zhou, S. X.; Fan, L. Z.; Fan, H. Microchim. Acta 2016, 183, 2605.  doi: 10.1007/s00604-016-1909-1

    21. [21]

      Xie, R. B.; Wang, Z. F.; Yu, H. T.; Fan, Z. T.; Yuan, F. L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Fan, H. Electrochim. Acta 2016, 201, 220.  doi: 10.1016/j.electacta.2016.03.198

    22. [22]

      Guo, R. H.; Zhou, S. X.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Voelcker, N. H. ACS Appl. Mater. Interfaces 2015, 7, 23958.  doi: 10.1021/acsami.5b06523

    23. [23]

      Li, S. H.; Li, Y. C.; Gao, J.; Zhu, J.; Fan, L. Z.; Li, X. H. Anal. Chem. 2014, 86, 1021.
       

    24. [24]

      Fan, Z. T.; Zhou, S. X.; Garcia, C.; Fan, L. Z.; Zhou, J. B. Nanoscale 2017, 9, 4928.  doi: 10.1039/C7NR00888K

    25. [25]

      Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Nanoscale 2015, 7, 11727  doi: 10.1039/C5NR02007G

    26. [26]

      Fan, Z. T.; Li, S. H.; Yuan, F. L.; Fan, L. Z. RSC Adv. 2015, 5, 19773.  doi: 10.1039/C4RA17131D

    27. [27]

      Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Nano Today 2016, 11, 565.  doi: 10.1016/j.nantod.2016.08.006

    28. [28]

      Xie, R. B.; Wang, Z. F.; Liu, Y. T.; Fan, L. Z.; Li, Y. C.; Li, X. H.; Anal. Methods 2016, 8, 4001.  doi: 10.1039/C6AY00289G

    29. [29]

      Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W. Anal. Methods 2012, 4, 58.  doi: 10.1039/C1AY05366C

    30. [30]

      Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Adv. Mater. 2017, 29, 1702910.  doi: 10.1002/adma.v29.37

    31. [31]

      Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Adv. Mater. 2017, 29, 1604436.  doi: 10.1002/adma.v29.3

    32. [32]

      Xie, W. J.; Fu, Y. Y.; Ma, H.; Zhang, M.; Fan, L. Z. Acta Chim. Sinica 2012, 70, 2169(in Chinese).
       

    33. [33]

      Zhang, M.; Bai, L. L.; Shang, W. H.; Xie, W. J.; Ma, H.; Fu, Y. Y.; Fang, D. C.; Sun, H.; Fan, L. Z.; Han, M.; Liu, C. M.; Yang, S. H. J. Mater. Chem. 2012, 22, 7461.  doi: 10.1039/c2jm16835a

    34. [34]

      Fan, Z. T.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Carbon 2014, 70, 149.  doi: 10.1016/j.carbon.2013.12.085

    35. [35]

      Tan, X. Y.; Li, Y. C.; Li, X. H.; Zhou, S. X.; Yang, S. H. Chem. Commun. 2015, 51, 2544.  doi: 10.1039/C4CC09332A

    36. [36]

      Shi, X. Y.; Wang, Y. R.; Wang, Z. N.; Wei, S. J.; Sun, Y. Y.; Liu, D. H.; Zhou, J.; Zhang, Y. Y.; Shi, J. W. Adv. Optical Mater. 2014, 2, 88.  doi: 10.1002/adom.201300299

    37. [37]

      Chen, R.; Utama, M. I. B.; Peng, Z. P.; Peng, B.; Xiong, Q. H.; Sun, H. D. Adv. Mater. 2011, 23, 1404.  doi: 10.1002/adma.v23.11

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(36)
  • Abstract views(2808)
  • HTML views(653)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return