Citation: Xu Yi, Zhao Yan, Zhang Yejun, Cui Zhifen, Wang Lihua, Fan Chunhai, Gao Jimin, Sun Yanhong. Angiopep-2-conjugated Ag2S Quantum Dot for NIR-Ⅱ Imaging of Brain Tumors[J]. Acta Chimica Sinica, ;2018, 76(5): 393-399. doi: 10.6023/A18010039 shu

Angiopep-2-conjugated Ag2S Quantum Dot for NIR-Ⅱ Imaging of Brain Tumors

  • Corresponding author: Gao Jimin, jimingao64@163.com Sun Yanhong, sunyanhong@sinap.ac.cn
  • Received Date: 26 January 2018
    Available Online: 16 May 2018

    Fund Project: the National Natural Science Foundation of China 11575278the Ministry of Science and Technology of China 2016YFA0400902the National Natural Science Foundation of China 61378062the Ministry of Science and Technology of China 2016YFA0201200the National Natural Science Foundation of China 21675167the Key Research Program of Frontier Sciences QYZDJ-SSW-SLH031-02Project supported by the National Natural Science Foundation of China (Nos. 11575278, 21675167, 11675251, 61475181, 61378062), the Ministry of Science and Technology of China (Nos. 2016YFA0201200, 2016YFA0400902) and the Key Research Program of Frontier Sciences (No. QYZDJ-SSW-SLH031-02)the National Natural Science Foundation of China 11675251the National Natural Science Foundation of China 61475181

Figures(8)

  • Ag2S quantum dot with excellent NIR-Ⅱ fluorescence can provide deeper tissue penetration (>1.1 cm) and higher spatiotemporal resolution (25 μm, 50 ms) in comparison to the conventional fluorophore. In this study, we designed a NIR-Ⅱ probe based Ag2S quantum dot for imaging of brain tumor. Angiopep-2 was used to modify Ag2S quantum dot, which is a 19-mer peptide exhibiting high binding efficiency with low-density lipoprotein receptor-related protein-1 (LRP-1) of blood brain barrier and glioma. Due to the surface of Ag2S quantum dots with carboxyl groups and angiopep-2 peptide with amino groups, Ag2S was conjugated with Angiopep-2 (Ag2S-ANG) through the condensation reaction of amino and carboxyl groups mediated by EDC and NHS. The structure, size and spectral properties of Ag2S-ANG were characterized by agarose electrophoresis, dynamic light scattering transmission, electron microscope (TEM), UV-vis spectrometer and NIR fluorescence spectrometer, respectively. Results showed that Ag2S-ANG had a short migration distance compared with Ag2S in the agarose gel electrophoresis. The hydrate particle size of Ag2S was approximately 6 nm, Ag2S-ANG was approximately 8 nm and its zeta potential exhibited electropositive reinforcement, zeta potential of Ag2S is -11.47±1.56 mV and Ag2S-ANG is +28.7±1.35 mV. Ag2S-ANG exhibited similar absorbance and fluorescence spectra to Ag2S, except a slight enhancement of emission peak. These results indicated that Ag2S-ANG was synthesized successfully. We further observed its cell cytotoxicity, distribution and uptake in Uppsala 87 Malignant Glioma cells(U87MG), and in vivo distribution in the solid tumor-bearing mouse. Ag2S-ANG had no obvious cytotoxicity when the concentration is inferior to 100 μg/mL and had more uptake in U87MG cells than that of Ag2S. In animal experiments, glioma tumor-bearing mice were used to investigate the distribution and tumor targeting of Ag2S-ANG. Results showed that Ag2S-ANG can distribute and accumulate in subcutaneous tumor site, indicating that Ag2S-ANG had the potential of targeting the glioma cells.
  • 加载中
    1. [1]

      Abbott, N. J.; Patabendige, A. A.; Dolman, D. E.; Yusof, S. R.; Begley, D. J. Neurobiol. Dis. 2010, 37, 13.  doi: 10.1016/j.nbd.2009.07.030

    2. [2]

      Tajes, M.; Ramos-Fernandez, E.; Xian, W. J.; Bosch-Morato, M.; Guivernau, B.; Eraso-Pichot, A.; Salvador, B.; Fernandez-Busquets, X.; Roquer, J.; Munoz, F. J. Mol. Membr. Biol. 2014, 31, 152.  doi: 10.3109/09687688.2014.937468

    3. [3]

      Chen, Y.; Liu, L. Adv. Drug Delivery Rev. 2012, 64, 640.  doi: 10.1016/j.addr.2011.11.010

    4. [4]

      Patabendige, A.; Skinner, R. A.; Abbott, N. J. Brain Res. 2013, 1521, 1.  doi: 10.1016/j.brainres.2012.06.057

    5. [5]

      Pardridge, W. M. Nat. Rev. Drug Discovery 2002, 1, 131.  doi: 10.1038/nrd725

    6. [6]

      Jain, S.; Mishra, V.; Singh, P.; Dubey, P. K.; Saraf, D. K.; Vyas, S. P. Int. J. Pharm. 2003, 261, 43.  doi: 10.1016/S0378-5173(03)00269-2

    7. [7]

      Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8, 32159.  doi: 10.1021/acsami.6b10175

    8. [8]

      Li, D.; Yang, K.; Li, J. S.; Ke, X. Y.; Duan, Y.; Du, R.; Song, P.; Yu, K. F.; Ren, W.; Huang, D.; Li, X. H.; Hu, X.; Zhang, X.; Zhang, Q. Int. J. Nanomed. 2012, 7, 6105.
       

    9. [9]

      Liu, H. L.; Hua, M. Y.; Yang, H. W.; Huang, C. Y.; Chu, P. C.; Wu, J. S.; Tseng, I. C.; Wang, J. J.; Yen, T. C.; Chen, P. Y.; Wei, K. C. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 15205.  doi: 10.1073/pnas.1003388107

    10. [10]

      Ge, Z.; Pei, H.; Wang, L.; Song, S.; Fan, C. Sci. China, Chem. 2011, 54, 1273.  doi: 10.1007/s11426-011-4327-6

    11. [11]

      Pei, H.; Liang, L.; Yao, G. B.; Li, J.; Huang, Q.; Fan, C. H. Angew. Chem., Int. Ed. 2012, 51, 9020.  doi: 10.1002/anie.201202356

    12. [12]

      Yang, F.; Zuo, X.; Li, Z.; Deng, W.; Shi, J.; Zhang, G.; Huang, Q.; Song, S.; Fan, C. Adv. Mater. 2014, 26, 4671.  doi: 10.1002/adma.v26.27

    13. [13]

      Yao, G.; Li, J.; Chao, J.; Pei, H.; Liu, H.; Zhao, Y.; Shi, J.; Huang, Q.; Wang, L.; Huang, W.; Fan, C. Angew. Chem., Int. Ed. Engl. 2015, 54, 2966.
       

    14. [14]

      Ye, D. K.; Zuo, X. L.; Fan, C. H. Prog. Chem. 2017, 29, 36.
       

    15. [15]

      Chen, P.; Pan, D.; Fan, C.; Chen, J.; Huang, K.; Wang, D.; Zhang, H.; Li, Y.; Feng, G.; Liang, P.; He, L.; Shi, Y. Nat. Nanotechnol. 2011, 6, 639.  doi: 10.1038/nnano.2011.141

    16. [16]

      Yan, H. H.; Wang, L.; Wang, J. Y.; Weng, X. F.; Lei, H.; Wang, X. X.; Jiang, L.; Zhu, J. H.; Lu, W. Y.; Wei, X. B.; Li, C. ACS Nano 2012, 6, 410.  doi: 10.1021/nn203749v

    17. [17]

      Bruun, J.; Larsen, T. B.; Jolck, R. I.; Eliasen, R.; Holm, R.; Gjetting, T.; Andresen, T. L. Int. J. Nanomed. 2015, 10, 5995.
       

    18. [18]

      Kumar, P.; Wu, H.; McBride, J. L.; Jung, K. E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; Shankar, P.; Manjunath, N. Nature 2007, 448, 39.  doi: 10.1038/nature05901

    19. [19]

      Li, J.; Feng, L.; Fan, L.; Zha, Y.; Guo, L.; Zhang, Q.; Chen, J.; Pang, Z.; Wang, Y.; Jiang, X.; Yang, V. C.; Wen, L. Biomaterials 2011, 32, 4943.  doi: 10.1016/j.biomaterials.2011.03.031

    20. [20]

      Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. J. Am. Chem. Soc. 2010, 132, 1470.  doi: 10.1021/ja909490r

    21. [21]

      Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biomaterials 2013, 34, 3639.  doi: 10.1016/j.biomaterials.2013.01.089

    22. [22]

      Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. ACS Nano 2012, 6, 3695.  doi: 10.1021/nn301218z

    23. [23]

      Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710.  doi: 10.1038/nnano.2009.326

    24. [24]

      Wang, J.; Wu, Y.; Sun, L.; Zeng, F.; Wu, S. Acta Chim. Sinica 2016, 74, 910.
       

    25. [25]

      Ji, G.; Yan, L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. Acta Chim. Sinica 2016, 74, 917.
       

    26. [26]

      Wei, Y.; Yang, X.; Ma, Y.; Wang, S.; Yuan, Q. Chin. J. Chem. 2016, 34, 558.  doi: 10.1002/cjoc.v34.6

    27. [27]

      Arshad, A.; Chen, H.; Bai, X.; Xu, S.; Wang, L. Chin. J. Chem. 2016, 34, 576.  doi: 10.1002/cjoc.v34.6

    28. [28]

      Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363.
       

    29. [29]

      Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. Angew. Chem., Int. Ed. Engl. 2012, 51, 9818.  doi: 10.1002/anie.201206059

    30. [30]

      Li, C.; Li, F.; Zhang, Y.; Zhang, W.; Zhang, X. E.; Wang, Q. ACS Nano 2015, 9, 12255.  doi: 10.1021/acsnano.5b05503

    31. [31]

      Rault, I.; Frei, V.; Herbage, D.; AbdulMalak, N.; Huc, A. J. Mater. Sci.-Mater. Med. 1996, 7, 215.  doi: 10.1007/BF00119733

    32. [32]

      Demeule, M.; Regina, A.; Che, C.; Poirier, J.; Nguyen, T.; Gabathuler, R.; Castaigne, J. P.; Beliveau, R. J. Pharmacol. Exp. Ther. 2008, 324, 1064.
       

    33. [33]

      Demeule, M.; Currie, J. C.; Bertrand, Y.; Che, C.; Nguyen, T.; Regina, A.; Gabathuler, R.; Castaigne, J. P.; Beliveau, R. J. Neurochem. 2008, 106, 1534.  doi: 10.1111/jnc.2008.106.issue-4

    34. [34]

      Che, C.; Yang, G.; Thiot, C.; Lacoste, M. C.; Currie, J. C.; Demeule, M.; Regina, A.; Beliveau, R.; Castaigne, J. P. J. Med. Chem. 2010, 53, 2814.  doi: 10.1021/jm9016637

    35. [35]

      Sun, X.; Pang, Z.; Ye, H.; Qiu, B.; Guo, L.; Li, J.; Ren, J.; Qian, Y.; Zhang, Q.; Chen, J.; Jiang, X. Biomaterials 2012, 33, 916.
       

    36. [36]

      Gao, H.; Zhang, S.; Cao, S.; Yang, Z.; Pang, Z.; Jiang, X. Mol. Pharm. 2014, 11, 2755.
       

    37. [37]

      Huang, S.; Li, J.; Han, L.; Liu, S.; Ma, H.; Huang, R.; Jiang, C. Biomaterials 2011, 32, 6832.  doi: 10.1016/j.biomaterials.2011.05.064

    38. [38]

      Zuo, H.; Chen, W.; Cooper, H. M.; Xu, Z. P. ACS Appl. Mater. Interfaces 2017, 9, 20444.  doi: 10.1021/acsami.7b06421

    39. [39]

      Ren, J.; Shen, S.; Wang, D.; Xi, Z.; Guo, L.; Pang, Z.; Qian, Y.; Sun, X.; Jiang, X. Biomaterials 2012, 33, 3324.  doi: 10.1016/j.biomaterials.2012.01.025

    40. [40]

      Wei, X.; Zhan, C.; Chen, X.; Hou, J.; Xie, C.; Lu, W. Mol. Pharmaceutics 2014, 11, 3261.  doi: 10.1021/mp500086e

    41. [41]

      Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Biomaterials 2011, 32, 4293.  doi: 10.1016/j.biomaterials.2011.02.044

    42. [42]

      Chen, C.; Duan, Z.; Yuan, Yan.; Li, R.; Pang, L.; Liang, J.; Xu, X.; Wang, J. ACS Appl. Mater. Interfaces 2017, 9, 5864.  doi: 10.1021/acsami.6b15831

    43. [43]

      Shao, K.; Huang, R.; Li, J.; Han, L.; Ye, L.; Lou, J.; Jiang, C. J. Control. Release 2010, 147, 118.  doi: 10.1016/j.jconrel.2010.06.018

    44. [44]

      Shen, J.; Zhan, C.; Xie, C.; Meng, Q.; Gu, B.; Li, C.; Zhang, Y.; Lu, W. J. Drug. Target. 2011, 19, 197.  doi: 10.3109/1061186X.2010.483517

    45. [45]

      Tian, T.; Li, J.; Xie, C.; Sun, Y.; Lei, H.; Liu, X.; Xia, J.; Shi, J.; Wang, L.; Lu, W.; Fan, C. ACS Appl. Mater. Interfaces 2018, 10, 3414.  doi: 10.1021/acsami.7b17927

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(11)
  • Abstract views(987)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return