Citation: Bian Lei, Li Wei, Wei Zhenzhen, Liu Xiaowei, Li Song. Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening[J]. Acta Chimica Sinica, ;2018, 76(4): 303-310. doi: 10.6023/A18010026 shu

Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening

  • Corresponding author: Li Song, songli@hust.edu.cn
  • Received Date: 16 January 2018
    Available Online: 23 April 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51606081) and Basic Research Foundation of Shenzhen (No. JCYJ20160506170043770)the National Natural Science Foundation of China 51606081Basic Research Foundation of Shenzhen JCYJ20160506170043770

Figures(6)

  • With the rapidly increasing number of reported metal-organic frameworks (MOFs), conventional trial-and-error method is obviously not applicable to the development of high-performance MOFs for formaldehyde adsorption, due to its low efficiency, high cost and long developing period. Thus, high-throughput computational screening (HTCS) strategy based on grand canonical Monte Carlo (GCMC) simulation is proposed to quickly explore the top-performing MOFs with high adsorption capability towards formaldehyde. In this work, the computation-ready experimental (CoRE)-MOF database consisting of 2932 MOF structures carrying density derived electrostatic and chemical (DDEC) charges obtained from density function (DFT) theory calculations, were employed in high-throughput GCMC simulations for formaldehyde adsorption from the air. The structure-property relationship from HTCS revealed that the MOF candidates with high formaldehyde uptakes exhibited small pore sizes, relatively high selectivity and moderate heat of adsorption (Qst). Afterwards, the top MOFs with both high uptake and selectivity towards formaldehyde were chosen for further experimental evaluation. Three selected MOFs Y-BTC, ZnCar and Ni-BIC were successfully synthesized and characterized by powder X-ray diffraction (PXRD) and BET surface area analysis. In order to validate our HTCS strategy, the representative Cu-BTC and activated carbon (AC) were also adopted as controls. The formaldehyde adsorption test was performed in a sealed container with the formaldehyde concentration of 100 mg/m3 at 298 K. After 24 h adsorption, the formaldehyde uptakes of the adsorbents were obtained according to the concentration changes prior to and after formaldehyde exposure by UV-vis spectrometer. It was found that the adsorption capacities of Y-BTC, ZnCar and Ni-BIC were 0.38, 0.25 and 0.11 mol/kg, respectively, which were remarkably higher than Cu-BTC (0.08 mol/kg) and AC (0.06 mol/kg). The recyclability of the best performer Y-BTC was also verified. These findings open up the possibility of employing HTCS strategy for highly efficient exploration of MOF adsorbents for formaldehyde removal.
  • 加载中
    1. [1]

      Zhou, K. W.; Zhou, Y.; Sun, Y.; Tian, X. J. Acta Chim. Sinica 2008, 66, 943.  doi: 10.3321/j.issn:0567-7351.2008.08.018
       

    2. [2]

      Chen, Y.; Qi, F. M.; Yang, C.; Ye, W. C.; Wang, C. M. Acta Chim. Sinica 2009, 67, 671.  doi: 10.3321/j.issn:0567-7351.2009.07.015
       

    3. [3]

      Liu, Y. H.; Yu, Q.; Li, C.; Lin, X.; Zhang, X. Q.; Yu, L.; Wu, L. F. Guangdong Chem. Ind. 2011, 38, 128.
       

    4. [4]

      Ruhl, M. J. Chem. Eng. Prog. 1993, 89, 37.

    5. [5]

      Wang, Z.; Wang, W. Z.; Jiang, D.; Zhang, L.; Zheng, Y. Dalton Trans. 2016, 45, 11306.  doi: 10.1039/C6DT01696K

    6. [6]

      Zhong, C. L. Structure-Property Relationship and Design of Metal-Organic Frameworks, Science Press, Beijing, 2013.

    7. [7]

      Farha, O. K.; Hupp, J. T.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Gomez-Gualdron, D. A.; Borah, B. J. Am. Chem. Soc. 2014, 36, 15016.

    8. [8]

      Pei, X. K.; Chen, Y. F.; Li, S. Q.; Zhang, S. H.; Feng, X.; Zhou, J. W.; Wang, B. Sci. China-Chem. 2016, 34, 157.  doi: 10.1002/cjoc.v34.2

    9. [9]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 40, 1477.
       

    10. [10]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
       

    11. [11]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    12. [12]

      Li, L.; Cao, X. Y.; Huang, R. D. Chin. J. Chem. 2015, 34, 143.
       

    13. [13]

      Li, X. X.; Shu, L.; Chen, S. Acta Chim. Sinica 2016, 74, 969.  doi: 10.3866/PKU.WHXB201601061
       

    14. [14]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.  doi: 10.1038/378703a0

    15. [15]

      Furukawa, H.; Müller, U.; Yaghi, O. M. Angew. Chem. 2015, 54, 3417.  doi: 10.1002/anie.201410252

    16. [16]

      Gu, Z. Y.; Wang, G.; Yan, X. P. Anal. Chem. 2010, 82, 1365.  doi: 10.1021/ac902450f

    17. [17]

      Li, C. M.; Huang, J. P.; Zhu, H. L.; Liu, L. L.; Feng, Y. M.; Hu, G.; Yu, X. B. Sensor. Actuat. B-Chem. 2017, 253, 275.  doi: 10.1016/j.snb.2017.06.064

    18. [18]

      Zhou, W.; Wu, Y. P.; Zhao, J.; Dong, W. W.; Qiao, X. Q.; Hou, D. F.; Bu, X. H.; Li, D. S. Inorg. Chem. 2017, 56, 14111.  doi: 10.1021/acs.inorgchem.7b02254

    19. [19]

      Zhao, Z. Y.; Hao, J. Y.; Song, X. D.; Ren, S. Z.; Hao, C. RSC Adv. 2015, 5, 49752.  doi: 10.1039/C5RA07373A

    20. [20]

      Yu, Y.; Zhang, X. M.; Ma, J. P.; Liu, Q. K.; Wang, P.; Dong, Y. B. Chem. Commun. 2014, 50, 1444.  doi: 10.1039/C3CC47723A

    21. [21]

      Moradpour, T.; Abbasi, A.; Hecke, K. V. J. Solid State Chem. 2015, 228, 36.  doi: 10.1016/j.jssc.2015.04.013

    22. [22]

      Bellat, J. P.; Bezverkhyy, I.; Weber, G.; Royer, S.; Averlant, R.; Giraudon, J. M.; Lamonier, J. F. J. Hazard. Mater. 2015, 300, 711.  doi: 10.1016/j.jhazmat.2015.07.078

    23. [23]

      Li, J. Y.; Min, J. Mater. Rev. 2009, 23, 460.  doi: 10.3321/j.issn:1005-023X.2009.z2.136

    24. [24]

      Yao, Y. H.; Song, X. D.; Qiu, J. S.; Hao, C. J. Phys. Chem. A 2014, 118, 6191.  doi: 10.1021/jp503722m

    25. [25]

      Wilmer, C. E.; Leaf, M.; Chang, Y. L.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.  doi: 10.1038/nchem.1192

    26. [26]

      Watanabe, T.; Sholl, D. S. Langmuir 2012, 28, 14114.  doi: 10.1021/la301915s

    27. [27]

      Sun, W. Z.; Lin, L. C.; Peng, X.; Smit, B. AIChE J. 2014, 60, 2314.  doi: 10.1002/aic.14467

    28. [28]

      Colón, Y. J.; Fairen-Jimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383.  doi: 10.1021/jp4122326

    29. [29]

      Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Chem. Mater. 2013, 25, 3373.  doi: 10.1021/cm401978e

    30. [30]

      Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Chem. Rev. 2012, 112, 703.  doi: 10.1021/cr200217c

    31. [31]

      Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Chem. Sci. 2012, 3, 2217.  doi: 10.1039/c2sc01097f

    32. [32]

      Heest, T. V.; Teichmcgoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D.; Sholl, D. S. J. Phys. Chem. C 2012, 116, 13183.

    33. [33]

      Lin, L. C.; Berger, A. H.; Martin, R. L.; Kim, J. H.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nat. Mater. 2012, 11, 633.  doi: 10.1038/nmat3336

    34. [34]

      Haldoupis, E.; Nair, S.; Sholl, D. S. J. Am. Chem. Soc. 2010, 132, 7528.  doi: 10.1021/ja1023699

    35. [35]

      First, E. L.; Gounaris, C. E.; Floudas, C. A. Langmuir 2013, 29, 5599.  doi: 10.1021/la400547a

    36. [36]

      Qiao, Z. W.; Xu, Q. S.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.  doi: 10.1021/acs.jpcc.7b07758

    37. [37]

      Li, W.; Rao, Z. Z.; Chung, Y. G.; Li, S. ChemistrySelect 2017, 2, 9458.  doi: 10.1002/slct.201701934

    38. [38]

      Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.  doi: 10.1021/acs.langmuir.6b02803

    39. [39]

      Mcdaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. J. Phys. Chem. C 2015, 119, 3143.  doi: 10.1021/jp511674w

    40. [40]

      Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.  doi: 10.1021/acs.jpclett.7b02700

    41. [41]

      Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.  doi: 10.1021/cm502594j

    42. [42]

      Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X. Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Nat. Commun. 2016, 7, 11831.  doi: 10.1038/ncomms11831

    43. [43]

      Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chem. Mater. 2017, 29, 1.  doi: 10.1021/acs.chemmater.6b05235

    44. [44]

      Liu, X.; Wang, J. Y.; Li, Q. Y.; Jiang, S.; Zhang, T. H.; Ji, S. F. J. Rare-Earths 2014, 32, 189.  doi: 10.1016/S1002-0721(14)60050-8

    45. [45]

      Katsoulidis, A. P.; Park, K. S.; Antypov, D.; Martígastaldo, C.; Miller, G. J.; Warren, J. E.; Robertson, C. M.; Blanc, F.; Darling, G. R.; Berry, N. G.; Purton, J. A.; Adams, D. J. Angew. Chem. Int. Ed. 2014, 126, 197.  doi: 10.1002/ange.v126.1

    46. [46]

      Wang, Q. M.; Shen, D. M.; Bülow, M.; Lau, M. L.; Deng, S. G.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Micropor. Mesopor. Mater. 2002, 55, 217.  doi: 10.1016/S1387-1811(02)00405-5

    47. [47]

      Xia, Q. B.; Miao, J. P.; Sun, X. J.; Zhou, X.; Li, Z.; Xi, H. X. J. South China Univ. Tech. Nat. Sci. Ed. 2013, 12, 24.
       

    48. [48]

      Huo, S. H. Ph. D. Dissertation, Nankai University, Tianjin, 2012.

    49. [49]

      Ke, F. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014.

    50. [50]

      Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6, 47771.  doi: 10.1039/C6RA04656H

    51. [51]

      Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Micropor. Mesopor. Mater. 2012, 149, 134.  doi: 10.1016/j.micromeso.2011.08.020

    52. [52]

      Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.  doi: 10.1021/ja00051a040

    53. [53]

      Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.  doi: 10.1002/(ISSN)1547-5905

    54. [54]

      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.  doi: 10.1063/1.470117

    55. [55]

      Hantal, G.; Jedlovszky, P.; Hoang, P. N. M.; Picaud, S. J. Phys. Chem. C 2007, 111, 14170.  doi: 10.1021/jp0742564

    56. [56]

      Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simulat. 2015, 42, 81.
       

    57. [57]

      Wu, L.; Xue, M.; Huang, L.; Qiu, S. L. Sci. China-Chem. 2011, 54, 1441.
       

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    14. [14]

      Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067

    15. [15]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(63)
  • Abstract views(3890)
  • HTML views(841)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return