Citation: Bian Lei, Li Wei, Wei Zhenzhen, Liu Xiaowei, Li Song. Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening[J]. Acta Chimica Sinica, ;2018, 76(4): 303-310. doi: 10.6023/A18010026 shu

Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening

  • Corresponding author: Li Song, songli@hust.edu.cn
  • Received Date: 16 January 2018
    Available Online: 23 April 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51606081) and Basic Research Foundation of Shenzhen (No. JCYJ20160506170043770)the National Natural Science Foundation of China 51606081Basic Research Foundation of Shenzhen JCYJ20160506170043770

Figures(6)

  • With the rapidly increasing number of reported metal-organic frameworks (MOFs), conventional trial-and-error method is obviously not applicable to the development of high-performance MOFs for formaldehyde adsorption, due to its low efficiency, high cost and long developing period. Thus, high-throughput computational screening (HTCS) strategy based on grand canonical Monte Carlo (GCMC) simulation is proposed to quickly explore the top-performing MOFs with high adsorption capability towards formaldehyde. In this work, the computation-ready experimental (CoRE)-MOF database consisting of 2932 MOF structures carrying density derived electrostatic and chemical (DDEC) charges obtained from density function (DFT) theory calculations, were employed in high-throughput GCMC simulations for formaldehyde adsorption from the air. The structure-property relationship from HTCS revealed that the MOF candidates with high formaldehyde uptakes exhibited small pore sizes, relatively high selectivity and moderate heat of adsorption (Qst). Afterwards, the top MOFs with both high uptake and selectivity towards formaldehyde were chosen for further experimental evaluation. Three selected MOFs Y-BTC, ZnCar and Ni-BIC were successfully synthesized and characterized by powder X-ray diffraction (PXRD) and BET surface area analysis. In order to validate our HTCS strategy, the representative Cu-BTC and activated carbon (AC) were also adopted as controls. The formaldehyde adsorption test was performed in a sealed container with the formaldehyde concentration of 100 mg/m3 at 298 K. After 24 h adsorption, the formaldehyde uptakes of the adsorbents were obtained according to the concentration changes prior to and after formaldehyde exposure by UV-vis spectrometer. It was found that the adsorption capacities of Y-BTC, ZnCar and Ni-BIC were 0.38, 0.25 and 0.11 mol/kg, respectively, which were remarkably higher than Cu-BTC (0.08 mol/kg) and AC (0.06 mol/kg). The recyclability of the best performer Y-BTC was also verified. These findings open up the possibility of employing HTCS strategy for highly efficient exploration of MOF adsorbents for formaldehyde removal.
  • 加载中
    1. [1]

      Zhou, K. W.; Zhou, Y.; Sun, Y.; Tian, X. J. Acta Chim. Sinica 2008, 66, 943.  doi: 10.3321/j.issn:0567-7351.2008.08.018
       

    2. [2]

      Chen, Y.; Qi, F. M.; Yang, C.; Ye, W. C.; Wang, C. M. Acta Chim. Sinica 2009, 67, 671.  doi: 10.3321/j.issn:0567-7351.2009.07.015
       

    3. [3]

      Liu, Y. H.; Yu, Q.; Li, C.; Lin, X.; Zhang, X. Q.; Yu, L.; Wu, L. F. Guangdong Chem. Ind. 2011, 38, 128.
       

    4. [4]

      Ruhl, M. J. Chem. Eng. Prog. 1993, 89, 37.

    5. [5]

      Wang, Z.; Wang, W. Z.; Jiang, D.; Zhang, L.; Zheng, Y. Dalton Trans. 2016, 45, 11306.  doi: 10.1039/C6DT01696K

    6. [6]

      Zhong, C. L. Structure-Property Relationship and Design of Metal-Organic Frameworks, Science Press, Beijing, 2013.

    7. [7]

      Farha, O. K.; Hupp, J. T.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Gomez-Gualdron, D. A.; Borah, B. J. Am. Chem. Soc. 2014, 36, 15016.

    8. [8]

      Pei, X. K.; Chen, Y. F.; Li, S. Q.; Zhang, S. H.; Feng, X.; Zhou, J. W.; Wang, B. Sci. China-Chem. 2016, 34, 157.  doi: 10.1002/cjoc.v34.2

    9. [9]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 40, 1477.
       

    10. [10]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
       

    11. [11]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    12. [12]

      Li, L.; Cao, X. Y.; Huang, R. D. Chin. J. Chem. 2015, 34, 143.
       

    13. [13]

      Li, X. X.; Shu, L.; Chen, S. Acta Chim. Sinica 2016, 74, 969.  doi: 10.3866/PKU.WHXB201601061
       

    14. [14]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.  doi: 10.1038/378703a0

    15. [15]

      Furukawa, H.; Müller, U.; Yaghi, O. M. Angew. Chem. 2015, 54, 3417.  doi: 10.1002/anie.201410252

    16. [16]

      Gu, Z. Y.; Wang, G.; Yan, X. P. Anal. Chem. 2010, 82, 1365.  doi: 10.1021/ac902450f

    17. [17]

      Li, C. M.; Huang, J. P.; Zhu, H. L.; Liu, L. L.; Feng, Y. M.; Hu, G.; Yu, X. B. Sensor. Actuat. B-Chem. 2017, 253, 275.  doi: 10.1016/j.snb.2017.06.064

    18. [18]

      Zhou, W.; Wu, Y. P.; Zhao, J.; Dong, W. W.; Qiao, X. Q.; Hou, D. F.; Bu, X. H.; Li, D. S. Inorg. Chem. 2017, 56, 14111.  doi: 10.1021/acs.inorgchem.7b02254

    19. [19]

      Zhao, Z. Y.; Hao, J. Y.; Song, X. D.; Ren, S. Z.; Hao, C. RSC Adv. 2015, 5, 49752.  doi: 10.1039/C5RA07373A

    20. [20]

      Yu, Y.; Zhang, X. M.; Ma, J. P.; Liu, Q. K.; Wang, P.; Dong, Y. B. Chem. Commun. 2014, 50, 1444.  doi: 10.1039/C3CC47723A

    21. [21]

      Moradpour, T.; Abbasi, A.; Hecke, K. V. J. Solid State Chem. 2015, 228, 36.  doi: 10.1016/j.jssc.2015.04.013

    22. [22]

      Bellat, J. P.; Bezverkhyy, I.; Weber, G.; Royer, S.; Averlant, R.; Giraudon, J. M.; Lamonier, J. F. J. Hazard. Mater. 2015, 300, 711.  doi: 10.1016/j.jhazmat.2015.07.078

    23. [23]

      Li, J. Y.; Min, J. Mater. Rev. 2009, 23, 460.  doi: 10.3321/j.issn:1005-023X.2009.z2.136

    24. [24]

      Yao, Y. H.; Song, X. D.; Qiu, J. S.; Hao, C. J. Phys. Chem. A 2014, 118, 6191.  doi: 10.1021/jp503722m

    25. [25]

      Wilmer, C. E.; Leaf, M.; Chang, Y. L.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.  doi: 10.1038/nchem.1192

    26. [26]

      Watanabe, T.; Sholl, D. S. Langmuir 2012, 28, 14114.  doi: 10.1021/la301915s

    27. [27]

      Sun, W. Z.; Lin, L. C.; Peng, X.; Smit, B. AIChE J. 2014, 60, 2314.  doi: 10.1002/aic.14467

    28. [28]

      Colón, Y. J.; Fairen-Jimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383.  doi: 10.1021/jp4122326

    29. [29]

      Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Chem. Mater. 2013, 25, 3373.  doi: 10.1021/cm401978e

    30. [30]

      Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Chem. Rev. 2012, 112, 703.  doi: 10.1021/cr200217c

    31. [31]

      Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Chem. Sci. 2012, 3, 2217.  doi: 10.1039/c2sc01097f

    32. [32]

      Heest, T. V.; Teichmcgoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D.; Sholl, D. S. J. Phys. Chem. C 2012, 116, 13183.

    33. [33]

      Lin, L. C.; Berger, A. H.; Martin, R. L.; Kim, J. H.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nat. Mater. 2012, 11, 633.  doi: 10.1038/nmat3336

    34. [34]

      Haldoupis, E.; Nair, S.; Sholl, D. S. J. Am. Chem. Soc. 2010, 132, 7528.  doi: 10.1021/ja1023699

    35. [35]

      First, E. L.; Gounaris, C. E.; Floudas, C. A. Langmuir 2013, 29, 5599.  doi: 10.1021/la400547a

    36. [36]

      Qiao, Z. W.; Xu, Q. S.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.  doi: 10.1021/acs.jpcc.7b07758

    37. [37]

      Li, W.; Rao, Z. Z.; Chung, Y. G.; Li, S. ChemistrySelect 2017, 2, 9458.  doi: 10.1002/slct.201701934

    38. [38]

      Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.  doi: 10.1021/acs.langmuir.6b02803

    39. [39]

      Mcdaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. J. Phys. Chem. C 2015, 119, 3143.  doi: 10.1021/jp511674w

    40. [40]

      Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.  doi: 10.1021/acs.jpclett.7b02700

    41. [41]

      Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.  doi: 10.1021/cm502594j

    42. [42]

      Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X. Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Nat. Commun. 2016, 7, 11831.  doi: 10.1038/ncomms11831

    43. [43]

      Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chem. Mater. 2017, 29, 1.  doi: 10.1021/acs.chemmater.6b05235

    44. [44]

      Liu, X.; Wang, J. Y.; Li, Q. Y.; Jiang, S.; Zhang, T. H.; Ji, S. F. J. Rare-Earths 2014, 32, 189.  doi: 10.1016/S1002-0721(14)60050-8

    45. [45]

      Katsoulidis, A. P.; Park, K. S.; Antypov, D.; Martígastaldo, C.; Miller, G. J.; Warren, J. E.; Robertson, C. M.; Blanc, F.; Darling, G. R.; Berry, N. G.; Purton, J. A.; Adams, D. J. Angew. Chem. Int. Ed. 2014, 126, 197.  doi: 10.1002/ange.v126.1

    46. [46]

      Wang, Q. M.; Shen, D. M.; Bülow, M.; Lau, M. L.; Deng, S. G.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Micropor. Mesopor. Mater. 2002, 55, 217.  doi: 10.1016/S1387-1811(02)00405-5

    47. [47]

      Xia, Q. B.; Miao, J. P.; Sun, X. J.; Zhou, X.; Li, Z.; Xi, H. X. J. South China Univ. Tech. Nat. Sci. Ed. 2013, 12, 24.
       

    48. [48]

      Huo, S. H. Ph. D. Dissertation, Nankai University, Tianjin, 2012.

    49. [49]

      Ke, F. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2014.

    50. [50]

      Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6, 47771.  doi: 10.1039/C6RA04656H

    51. [51]

      Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Micropor. Mesopor. Mater. 2012, 149, 134.  doi: 10.1016/j.micromeso.2011.08.020

    52. [52]

      Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.  doi: 10.1021/ja00051a040

    53. [53]

      Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.  doi: 10.1002/(ISSN)1547-5905

    54. [54]

      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.  doi: 10.1063/1.470117

    55. [55]

      Hantal, G.; Jedlovszky, P.; Hoang, P. N. M.; Picaud, S. J. Phys. Chem. C 2007, 111, 14170.  doi: 10.1021/jp0742564

    56. [56]

      Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simulat. 2015, 42, 81.
       

    57. [57]

      Wu, L.; Xue, M.; Huang, L.; Qiu, S. L. Sci. China-Chem. 2011, 54, 1441.
       

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(54)
  • Abstract views(2723)
  • HTML views(589)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return