Citation: Gu Zhengyang, Ji Shunjun. Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions[J]. Acta Chimica Sinica, ;2018, 76(5): 347-356. doi: 10.6023/A18010023 shu

Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions

  • Corresponding author: Ji Shunjun, shunjun@suda.edu.cn
  • Received Date: 16 January 2018
    Available Online: 30 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772137, 21672157, 21372174), the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Soochow University for financial support, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materialsthe National Natural Science Foundation of China 21372174the National Natural Science Foundation of China 21772137Priority Academic Program Development of Jiangsu Higher Education Institutions PAPDthe National Natural Science Foundation of China 21672157the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions 16KJA150002

Figures(18)

  • Isocyanide is an important reactive reactant containing stable divalent carbon atoms, which has been widely used in the construction of nitrogen compounds, new drugs and natural products. During the past decades, exhaustive efforts have been devoted to the discovery of highly efficient reactions involving isocyanide on the basis of the development of the Passerini and Ugi reactions. Several types of reactions involving isocyanides have been reported, such as nucleophilic attack, electrophilic addition, imidoylation reactions, and oxidation, etc. Recently, isocyanides have found a new application as versatile C1 building blocks in transition metal catalysis. The transition metal catalyzed reactions involving isocyanide insertion offer a vast potential to construct C—C or C-N bonds for the synthesis of nitrogen-containing fine chemicals. As we know, the catalysts used in isocyanide insertion reactions are mainly concentrated in some valuable transition metals compounds, such as Pd, Rh, Ag and other metals. Therefore, the development of catalysts based on the naturally more abundant, cost efficient transition metal complexes, represents an attractive alternative. In this context, rather environmentally benign cobalt complexes bear great potential for applications in the coupling reactions. The reduced electronegativity of cobalt as compared to the homologous group 9 elements translates into more nucleophilic organometallic cobalt intermediates which allow for unprecedented reaction pathways in transition-metal catalyzed C—H activations as well as significantly improved positional and chemo-selectivities. And in the recent years, notable success has been achieved with the development of cobalt catalyzed C—H functionalizations with either in situ generated or single-component cobalt-complexes under mild reaction conditions. How to find and use the cost efficient cobalt-complexes to catalyze the isocyanide coupling reaction is of great significance. Our group has been devoted to explore the isocyanide chemistry, and in recent years, we have achieved several progresses in the reaction of cobalt-catalyzed isocyanides. In this review we summarize the recent advances in the cobalt-catalyzed isocyanide coupling reactions.
  • 加载中
    1. [1]

      Lieke, W. Ann. Chem. Pharm. 1859, 112, 316.  doi: 10.1002/(ISSN)1099-0690

    2. [2]

      Scheuer, P. J. Acc. Chem. Res. 1992, 25, 433.  doi: 10.1021/ar00022a001

    3. [3]

      Passerini, M. Gazz. Chim. Ital. 1921, 51, 126.
       

    4. [4]

      Ugi, I.; Mey, R.; Fetzer, U.; Steinbruckner, C. Angew. Chem. 1959, 71, 386.
       

    5. [5]

      Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661.
       

    6. [6]

      Recent development of the Passerini and Ugi reactions, see selected reviews: (a) Dö mling, A. ; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (b) Zhu, J. Eur. J. Org. Chem. 2003, 1133; (c) Dö mling, A. Chem. Rev. 2006, 106, 17; (d) Ruijter, E. ; Scheffelaar, R. ; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234. (e) Sadjadi, S. ; Heravi, M. M. Tetrahedron 2011, 67, 2707; (f) Dö mling, A. ; Wang, W. ; Wang, K. Chem. Rev. 2012, 112, 3083.

    7. [7]

      (a) Liao, J. -Y. ; Shao, P. -L. ; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 628. (b) Kobiki, Y. ; Kawaguchi, S. ; Ogawa, A. Org. Lett. 2015, 17, 3490. (c) Zhang, Z. ; Li, Z. -Y. ; Fu, B. ; Zhang, Z. -H. Chem. Commun. 2015, 51, 16312. (d) Zhang, Z. ; Huang, B. -L. ; Qiao, G. -Y. ; Zhu, L. ; Xiao, F. ; Chen, F. ; Fu, B. ; Zhang, Z. -H. Angew. Chem. Int. Ed. 2017, 56, 1.

    8. [8]

      (a) Saluste, C. G. ; Whitby, R. J. ; Furber, M. Angew. Chem. Int. Ed. 2000, 39, 4156; (b) Saluste, C. G. ; Whitby, R. J. ; Furber, M. Tetrahedron Lett. 2001, 42, 6191; (c) Tetala, K. K. R. ; Whitby, R. J. ; Light, M. E. ; Hurtshouse, M. B. Tetrahedron Lett. 2004, 45, 6991; (d) Saluste, C. G. ; Crumpler, S. ; Furber, M. ; Whitby, R. J. Tetrahedron Lett. 2004, 45, 6995. (e) Whitby, R. J. ; Saluste, C. G. ; Furber, M. Org. Biomol. Chem. 2004, 2, 1974.

    9. [9]

      (a) Baelen, G. V. ; Kuijer, S. ; Rýček, L. ; Sergeyev, S. ; Janssen, E. ; de Kanter, F. J. J. ; Maes, B. U. W. ; Ruijter, E. ; Orru, R. V. A. Chem. Eur. J. 2011, 17, 15039; (b) Estévez, V. ; Baelen, G. V. ; Lentferink, B. H. ; Vlaar, T. ; Janssen, E. ; Maes, B. U. W. ; Orru, R. V. A. ; Ruijter, E. ACS Catal. 2014, 4, 40; (c) Vlaar, T. ; Ruijter, E. ; Znabet, A. ; Janssen, E. ; de Kanter, F. J. J. ; Maes, B. U. W. ; Orru, R. V. A. Org. Lett. 2011, 13, 6496.

    10. [10]

      (a) Jaing, H. -F. ; Liu, B. -F. ; Li, Y. -B. ; Wang, A. -Z. ; Huang, H. -W. Org. Lett. 2011, 13, 1028; (b) Li, Y. -B. ; Zhao, J. ; Chen, H. -J. ; Liu, B. ; Jiang, H. -F. Chem. Commun. 2012, 48, 3545; (c) Liu, B. -F. ; Li, Y. -B. ; Yin, M. -Z. ; Wu, W. -Q. ; Jiang, H. -F. Chem. Commun. 2012, 48, 11446; (d) Jaing, H. -F. ; Yin, M. -Z. ; Li, Y. -B. ; Liu, B. -F. ; Zhao, J. -S. -W. ; Wu, W. -Q. Chem. Commun. 2014, 50, 2037; (e) Liu, B. -F. ; Li, Y. -B. ; Jaing, H. -F. ; Yin, M. -Z. ; Huang, H. -W. Adv. Synth. Catal. 2012, 354, 2288. (f) Li, Z. ; Zheng, J. ; Hu, W. -G. ; Li, J. -X. ; Wu, W. -Q. ; Jaing, H. -F. Org. Chem. Front. 2017, 4, 1363.

    11. [11]

      (a) Qiu, G. ; Liu, G. ; Pu, S. -Z. ; Wu, J. Chem. Commun. 2012, 48, 2903; (b) Qiu, G. ; He, Y. -H. ; Wu, J. Chem. Commun. 2012, 48, 3836; (c) Qiu, G. ; Liu, Y. ; Wu, J. Org. Biomol. Chem. 2013, 11, 798.

    12. [12]

      (a) Wang, J. ; Luo, S. ; Huang, J. -B. ; Mao, T. -T. ; Zhu, Q. Chem. Eur. J. 2014, 20, 11220; (b) Li, J. ; He, Y. -M. ; Luo, S. ; Lei, J. ; Wang, J. ; Xie, Z. -Q. ; Zhu, Q. J. Org. Chem. 2015, 80, 2223.

    13. [13]

      (a) Huang, X. -S. ; Cong, X. -F. ; Mi, P. -B. ; Bi, X. -H. Chem. Commun. 2017, 53, 3858. (b) Fang, G. -C. ; Liu, J. -Q. ; Fu, J. -K. ; Liu, Q. ; Bi, X. -H. Org. Lett. 2017, 19, 1346. (c) Wang, Y. -M. ; KiranKumar, R. ; Bi, X. -H. Tetrahedron Lett. 2016, 57, 5730. (d) Xiao, P. ; Yuan, H. -Y. ; Liu, J. -Q. ; Zheng, Y. -Y. ; Bi, X. -H. ; Zhang, J. -P. ACS Catal. 2015, 5, 6177.

    14. [14]

    15. [15]

      (a) Vllar, T. ; Ruijter, E. ; Maes, B. U. W. ; Orru, R. V. A. Angew. Chem. Int. Ed. 2013, 52, 7084; (b) Qiu, G. ; Ding, Q. -P. ; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.

    16. [16]

      Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316.  doi: 10.1021/ja01854a006

    17. [17]

      Hebrard, F.; Kalck, P. Chem. Rev. 2009, 109, 4272.  doi: 10.1021/cr8002533

    18. [18]

      (a) Khand, I. U. ; Knox, G. R. ; Pauson, P. L. ; Watts, W. E. J. Chem. Soc. D 1971, 36a. (b) Khand, I. U. ; Knox, G. R. ; Pauson, P. L. ; Watts, W. E. J. Chem. Soc., Perkin Trans. 1 1973, 975.

    19. [19]

      Sugano, K.; Tanase, T.; Kobayashi, K.; Yamamoto, Y. Chem. Lett. 1991, 921.
       

    20. [20]

      Zhu, T.-H.; Wang, S.-Y.; Wang, G.-N.; Ji, S.-J. Chem. Eur. J. 2013, 19, 5850.  doi: 10.1002/chem.201300239

    21. [21]

      Zhu, T.-H.; Xu, X.-P.; Cao, J.-J.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. Adv. Synth. Catal. 2014, 356, 509.  doi: 10.1002/adsc.201300745

    22. [22]

      Zhu, T.-H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J. Adv. Synth. Catal. 2015, 357, 823.  doi: 10.1002/adsc.v357.4

    23. [23]

      Zhu, T.-H.; Wang, S.-Y.; Tao, Y.-Q.; Wei, T.-Q.; Ji, S.-J. Org. Lett. 2014, 16, 1260.  doi: 10.1021/ol500286x

    24. [24]

      Xu, P.; Zhu, T.-H.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. RSC Adv. 2016, 6, 32467.  doi: 10.1039/C6RA03216H

    25. [25]

      Ahmadi, F.; Bazgir, A. RSC Adv. 2016, 6, 61955.  doi: 10.1039/C6RA06828F

    26. [26]

      Gao, Q.; Zhou, P.; Liu, F.; Hao, W.-J.; Yao, C.; Jiang, B.; Tu, S.-J. Chem. Commun. 2015, 51, 9519.  doi: 10.1039/C5CC02754C

    27. [27]

      Gu, Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 2223.  doi: 10.1021/acs.joc.6b02797

    28. [28]

      Zou, F.-H.; Chen, X.-W.; Hao, W.-Y. Tetrahedron 2017, 73, 758.  doi: 10.1016/j.tet.2016.12.057

    29. [29]

      Kalsi, D.; Barsu, N.; Sundararaju, B. Chem. Eur. J. 2018, 24, 1.  doi: 10.1002/chem.201705257

    30. [30]

      (a) Cui, X. ; Xu, X. ; Jin, L. -M. ; Wojtas, L. ; Zhang, X. P. Chem. Sci. 2015, 6, 1219. (b) Zhu, S. -F. ; Xu, X. ; Perman, J. A. ; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796. (c) Xu, X. ; Lu, H. -J. ; Ruppel, J. V. ; Cui, X. ; de Mesa, S. L. ; Wojtas, L. ; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.

    31. [31]

      (a) Goswami, M. ; Lyaskovskyy, V. ; Domingos, S. R. ; Buma, W. J. ; Woutersen, S. ; Troeppner, O. ; Ivanović-Burmazović, I. ; Lu, H. -J. ; Cui, X. ; Zhang, X. P. ; Reijerse, E. J. ; DeBeer, S. ; van Schooneveld, M. M. ; Pfaff, F. F. ; Ray, K. ; de Bruin, B. J. Am. Chem. Soc. 2015, 137, 5468. (b) Paul, N. D. ; Mandal, S. ; Otte, M. ; Cui, X. ; Zhang, X. P. ; de Bruin, B. J. Am. Chem. Soc. 2014, 136, 1090.

    32. [32]

      Gu, Z.-Y.; Liu, Y.; Wang, F.; Bao, X.-G.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2017, 7, 3893.  doi: 10.1021/acscatal.7b00798

    33. [33]

      Jiang, T.; Gu, Z.-Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 7913.  doi: 10.1021/acs.joc.7b01127

    34. [34]

      Gu, Z.-Y.; Li, J.-H.; Wang, S.-Y.; Ji, S.-J. Chem. Commun. 2017, 53, 11173.  doi: 10.1039/C7CC06531K

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(44)
  • Abstract views(1157)
  • HTML views(252)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return