Citation: Chen Fangfang, Sun Xiaohui, Yao Qian, Li Zerong, Wang Jingbo, Li Xiangyuan. Accurate Calculation of the Energy Barriers and Rate Constants of the Large-size Molecular Reaction System for Abstraction from Alkyl Hydroperoxides[J]. Acta Chimica Sinica, ;2018, 76(4): 311-318. doi: 10.6023/A18010015 shu

Accurate Calculation of the Energy Barriers and Rate Constants of the Large-size Molecular Reaction System for Abstraction from Alkyl Hydroperoxides

  • Corresponding author: Li Zerong, lizerong@scu.edu.cn
  • Received Date: 12 January 2018
    Available Online: 22 April 2018

    Fund Project: the National Natural Science Foundation of China 91641120Project supported by the National Natural Science Foundation of China (No. 91641120)

Figures(4)

  • The reaction class of a free radical with a molecule are non-elementary reactions with negative activation energies and they are usually proceeded through two reaction steps with the first step being a reactant complex formation. This class of reactions are widespread in the atmospheric chemistry and the mechanism of hydrocarbon fuel combustion, so they are extensively studied in the theoretical calculation and experimental studies. The reaction class of α-H abstraction from alkyl hydroperoxides (ROOH) by hydroxyl radicals, which are important in the mechanism of hydrocarbon fuel combustion, are chosen as the object of this study. The regularity of this reaction class are revealed by quantum chemical calculations and their kinetic parameters are accurately calculated. When the standard molar Gibbs free energy change of the formation of the reactant complex in the first step is equal to zero, the corresponding temperature is defined as the conversion temperature Tc in this study, and it is shown that a steady state approximation method are applicable for this kind of reaction system to calculate the overall reaction rate constants when the temperature is much higher than the Tc. Geometric optimization and frequency analysis for all species were conducted at the BHandHLYP/6-311G(d, p) level. Five reactions are chosen as the representative for the reaction class and their single point energies are calculated using the method of CCSD(T)/CBS and it is shown that the highest conversion temperature for the five reactions is 195.17 K, far below usual modeling lowest temperature of the hydrocarbon fuel combustion, and therefore, the steady state approximation method is reasonable. It is also shown that the reaction-center geometries of the transition states are conserved, and thus the isodesmic reaction method is applicable to this reaction class to correct the energy barriers and rate constants at low-level BHandHLYP method. The obtained energy barriers are compared with the results using high-level ab initio CCSD(T)/CBS method and it is shown that the maximum absolute deviation of reaction energy barriers can be reduced from 19.99 kJ·mol-1 before correction to 1.47 kJ·mol-1 after correction, indicating that the isodesmic reaction method are applicable for the accurate calculation of the kinetic parameters for large-size molecular systems with the negative activation energy reaction. Finally, energy barriers for 20 reactions in the class are calculated with the isodesmic reaction method, and then based on steady state approximation, the rate constants for the overall reactions are calculated using the transition state theory in combination with the isodesmic correction scheme. It is shown that the negative activation energy relationship for the reaction class only exists in the low temperature region.
  • 加载中
    1. [1]

      Baasandorj, M.; Papanastasiou, D. K.; Talukdar, R. K.; Hasson, A. S.; Burkholder, J. B. Phys. Chem. Chem. Phys. 2010, 12, 12101.  doi: 10.1039/c0cp00463d

    2. [2]

      Roehl, C. M.; Marka1, Z.; Fry, J. L.; Wennberg, P. O. Atmos. Chem. Phys. 2007, 7, 713.  doi: 10.5194/acp-7-713-2007

    3. [3]

      Wang, C.; Chen, Z. Atmos. Environ. 2008, 42, 6614.  doi: 10.1016/j.atmosenv.2008.04.033

    4. [4]

      Wang, C.; Chen, Z. Prog. Nat. Sci. 2006, 16, 1141.  doi: 10.1080/10020070612330121

    5. [5]

      Lee, M.; Heikes, B. G.; O'Sullivan, D. W. Atmos. Environ. 2000, 34, 3475.  doi: 10.1016/S1352-2310(99)00432-X

    6. [6]

      Frey, M. M.; Stewart, R. W.; McConnell, J. R.; Bales, R. C. J. Geophys. Res. 2005, 110(D23), D23301.  doi: 10.1029/2005JD006110

    7. [7]

      Butkovskaya, N. I.; Kukui, A.; Pouvesle, N.; Bras, G. L. J. Phys. Chem. A 2004, 108, 7021.

    8. [8]

      Gross, A.; Mikkelsen, K. V.; Stockwell, W. R. Int. J. Quantum Chem. 2001, 84, 493.  doi: 10.1002/(ISSN)1097-461X

    9. [9]

      Ranzi, E.; Cavallotti, C.; Cuoci, A.; Frassoldati, A.; Pelucchi, M.; Faravelli, T. Combust. Flame. 2015, 162, 1679.  doi: 10.1016/j.combustflame.2014.11.030

    10. [10]

      Chen, D. N.; Jin, H. F.; Wang, Z. D.; Zhang, L. D.; Qi, F. J. Phys. Chem. A 2011, 115, 602.  doi: 10.1021/jp1099305

    11. [11]

      Alvarez-Idaboy, J. R.; Mora-Diez, N.; Boyd, R. J.; Vivier-Bunge, A. J. Am. Chem. Soc. 2001, 123, 2018.  doi: 10.1021/ja003372g

    12. [12]

      Bänsch, C.; Kiecherer, J.; Szöri, M.; Olzmann, M. J. Phys. Chem. A 2013, 117, 8343.  doi: 10.1021/jp405724a

    13. [13]

      Alvarez-Idaboy, J. R.; Mora-Diez, N.; Vivier-Bunge, A. J. Am. Chem. Soc. 2000, 122, 3715.  doi: 10.1021/ja993693w

    14. [14]

      Galano, A.; Alvarez-Idaboy, J. R.; Francisco-Márquez, M. J. Phys. Chem. A 2010, 114, 7525.  doi: 10.1021/jp103575f

    15. [15]

      Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A 2005, 109, 6031.

    16. [16]

      Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A 2007, 111, 5582.  doi: 10.1021/jp071412y

    17. [17]

      Shannon, R. J.; Taylor, S.; Goddard, A.; Blitz, M. A.; Heard, D. E. Phys. Chem. Chem. Phys. 2010, 12, 13511.  doi: 10.1039/c0cp00918k

    18. [18]

      Uc, V. H.; Alvarez-Idaboy, J. R.; Galano, A.; Garcia-Cruz, I.; Vivier-Bunge, A. J. Phys. Chem. A 2006, 110, 10155.  doi: 10.1021/jp062775l

    19. [19]

      Iuga, C.; Galano, A.; Vivier-Bunge, A. Chem. Phys. Chem. 2008, 9, 1453.  doi: 10.1002/cphc.v9:10

    20. [20]

      Galano, A.; Alvarez-Idaboy, J. R.; Ruiz-Santoyo, M. E.; Vivier-Bunge, A. J. Phys. Chem. A 2002, 106, 9520.  doi: 10.1021/jp020297i

    21. [21]

      Olivella, S.; Sole, A. J. Chem. Theory. Comput. 2008, 4, 941.  doi: 10.1021/ct8000798

    22. [22]

      Vega-Rodriguez, A.; Alvarez-Idaboy, J. R. Phys. Chem. Chem. Phys. 2009, 11, 7649.  doi: 10.1039/b906692f

    23. [23]

      Uc, V. H.; García-Cruz, I.; Hernandez-Laguna, A.; Vivier-Bunge, A. J. Phys. Chem. A 2000, 104, 7847.  doi: 10.1021/jp993678d

    24. [24]

      Singleton, D. L.; Cvetanovic, R. J. J. Am. Chem. Soc. 1976, 98, 6812.  doi: 10.1021/ja00438a006

    25. [25]

      Dente, M.; Bozzano, G.; Faravelli, T.; Marongiu, A.; Pierucci, S.; Ranzi, E. Adv. Chem. Eng. 2007, 32, 51.  doi: 10.1016/S0065-2377(07)32002-4

    26. [26]

      Niki, H.; Maker, P. D.; Savage, C. M.; Breltenbach, L. P. J. Phys. Chem. 1983, 87, 2190.  doi: 10.1021/j100235a030

    27. [27]

      Vaghjiani, G. L.; Ravishankara, A. R. J. Phys. Chem. 1989, 93, 1948.  doi: 10.1021/j100342a050

    28. [28]

      Baulch, D. L.; Bowman, C. T.; Cobos, C. J.; Cox, R. A.; Just, T.; Kerr, J. A.; Pilling, M. J.; Stocker, D.; Troe, J.; Tsang, W.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data. 2005, 34, 757.  doi: 10.1063/1.1748524

    29. [29]

      Luo, J.; Jia, X.; Gao, Y.; Song, G.; Yu, Y.; Wang, R.; Pan, X. J. Comput. Chem. 2011, 32, 987.  doi: 10.1002/jcc.21684

    30. [30]

      Truong, T. N. J. Chem. Phys. 2000, 113, 4957.  doi: 10.1063/1.1287839

    31. [31]

      Muszyńska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N. J. Phys. Chem. A 2009, 113, 8327.  doi: 10.1021/jp903762x

    32. [32]

      Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2006, 110, 473.  doi: 10.1021/jp051280d

    33. [33]

      Wang, B. Y.; Li, Z. R.; Tan, N. X.; Yao, Q.; Li, X. Y. J. Phys. Chem. A 2013, 117, 3279.  doi: 10.1021/jp400924w

    34. [34]

      Sun, X. H.; Yao, Q.; Li, Z. R.; Wang, J. B.; Li, X. Y. Theor. Chem. Acc. 2017, 136, 64.  doi: 10.1007/s00214-017-2086-y

    35. [35]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. A. ; Nakatsuji, H. ; Caricato, M. ; Li, X. ; Hratchian, H. P. ; Izmaylov, A. F. ; Bloino, J. ; Zheng, G. ; Sonnenberg, J. L. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, Jr. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Montgomery, J. A. ; J. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. ; Heyd, J. J. ; Brothers, E. ; Kudin, K. N. ; Staroverov, V. N. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Rega, N. ; Millam, J. M. ; Klene, M. ; Knox, J. E. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Zakrzewski, V. G. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Dapprich, S. ; Daniels, A. D. ; Farkas, Ö. ; Foresman, J. B. ; Ortiz, J. V. ; Cioslowski, J. ; Fox, D. J. Gaussian 09, Revision A. 1, Gaussian Inc., Wallingford, CT, 2009.

    36. [36]

      Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683.  doi: 10.1021/jp073974n

    37. [37]

      Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45.  doi: 10.1016/S0009-2614(98)00866-5

    38. [38]

      Huh, S. B.; Lee, J. S. J. Chem. Phys. 2003, 118, 3035.  doi: 10.1063/1.1534091

    39. [39]

      Wigner, E. J. Chem. Phys. 1937, 5, 720.  doi: 10.1063/1.1750107

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    8. [8]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(26)
  • Abstract views(2043)
  • HTML views(451)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return