Citation: Chen Fangfang, Sun Xiaohui, Yao Qian, Li Zerong, Wang Jingbo, Li Xiangyuan. Accurate Calculation of the Energy Barriers and Rate Constants of the Large-size Molecular Reaction System for Abstraction from Alkyl Hydroperoxides[J]. Acta Chimica Sinica, ;2018, 76(4): 311-318. doi: 10.6023/A18010015 shu

Accurate Calculation of the Energy Barriers and Rate Constants of the Large-size Molecular Reaction System for Abstraction from Alkyl Hydroperoxides

  • Corresponding author: Li Zerong, lizerong@scu.edu.cn
  • Received Date: 12 January 2018
    Available Online: 22 April 2018

    Fund Project: the National Natural Science Foundation of China 91641120Project supported by the National Natural Science Foundation of China (No. 91641120)

Figures(4)

  • The reaction class of a free radical with a molecule are non-elementary reactions with negative activation energies and they are usually proceeded through two reaction steps with the first step being a reactant complex formation. This class of reactions are widespread in the atmospheric chemistry and the mechanism of hydrocarbon fuel combustion, so they are extensively studied in the theoretical calculation and experimental studies. The reaction class of α-H abstraction from alkyl hydroperoxides (ROOH) by hydroxyl radicals, which are important in the mechanism of hydrocarbon fuel combustion, are chosen as the object of this study. The regularity of this reaction class are revealed by quantum chemical calculations and their kinetic parameters are accurately calculated. When the standard molar Gibbs free energy change of the formation of the reactant complex in the first step is equal to zero, the corresponding temperature is defined as the conversion temperature Tc in this study, and it is shown that a steady state approximation method are applicable for this kind of reaction system to calculate the overall reaction rate constants when the temperature is much higher than the Tc. Geometric optimization and frequency analysis for all species were conducted at the BHandHLYP/6-311G(d, p) level. Five reactions are chosen as the representative for the reaction class and their single point energies are calculated using the method of CCSD(T)/CBS and it is shown that the highest conversion temperature for the five reactions is 195.17 K, far below usual modeling lowest temperature of the hydrocarbon fuel combustion, and therefore, the steady state approximation method is reasonable. It is also shown that the reaction-center geometries of the transition states are conserved, and thus the isodesmic reaction method is applicable to this reaction class to correct the energy barriers and rate constants at low-level BHandHLYP method. The obtained energy barriers are compared with the results using high-level ab initio CCSD(T)/CBS method and it is shown that the maximum absolute deviation of reaction energy barriers can be reduced from 19.99 kJ·mol-1 before correction to 1.47 kJ·mol-1 after correction, indicating that the isodesmic reaction method are applicable for the accurate calculation of the kinetic parameters for large-size molecular systems with the negative activation energy reaction. Finally, energy barriers for 20 reactions in the class are calculated with the isodesmic reaction method, and then based on steady state approximation, the rate constants for the overall reactions are calculated using the transition state theory in combination with the isodesmic correction scheme. It is shown that the negative activation energy relationship for the reaction class only exists in the low temperature region.
  • 加载中
    1. [1]

      Baasandorj, M.; Papanastasiou, D. K.; Talukdar, R. K.; Hasson, A. S.; Burkholder, J. B. Phys. Chem. Chem. Phys. 2010, 12, 12101.  doi: 10.1039/c0cp00463d

    2. [2]

      Roehl, C. M.; Marka1, Z.; Fry, J. L.; Wennberg, P. O. Atmos. Chem. Phys. 2007, 7, 713.  doi: 10.5194/acp-7-713-2007

    3. [3]

      Wang, C.; Chen, Z. Atmos. Environ. 2008, 42, 6614.  doi: 10.1016/j.atmosenv.2008.04.033

    4. [4]

      Wang, C.; Chen, Z. Prog. Nat. Sci. 2006, 16, 1141.  doi: 10.1080/10020070612330121

    5. [5]

      Lee, M.; Heikes, B. G.; O'Sullivan, D. W. Atmos. Environ. 2000, 34, 3475.  doi: 10.1016/S1352-2310(99)00432-X

    6. [6]

      Frey, M. M.; Stewart, R. W.; McConnell, J. R.; Bales, R. C. J. Geophys. Res. 2005, 110(D23), D23301.  doi: 10.1029/2005JD006110

    7. [7]

      Butkovskaya, N. I.; Kukui, A.; Pouvesle, N.; Bras, G. L. J. Phys. Chem. A 2004, 108, 7021.

    8. [8]

      Gross, A.; Mikkelsen, K. V.; Stockwell, W. R. Int. J. Quantum Chem. 2001, 84, 493.  doi: 10.1002/(ISSN)1097-461X

    9. [9]

      Ranzi, E.; Cavallotti, C.; Cuoci, A.; Frassoldati, A.; Pelucchi, M.; Faravelli, T. Combust. Flame. 2015, 162, 1679.  doi: 10.1016/j.combustflame.2014.11.030

    10. [10]

      Chen, D. N.; Jin, H. F.; Wang, Z. D.; Zhang, L. D.; Qi, F. J. Phys. Chem. A 2011, 115, 602.  doi: 10.1021/jp1099305

    11. [11]

      Alvarez-Idaboy, J. R.; Mora-Diez, N.; Boyd, R. J.; Vivier-Bunge, A. J. Am. Chem. Soc. 2001, 123, 2018.  doi: 10.1021/ja003372g

    12. [12]

      Bänsch, C.; Kiecherer, J.; Szöri, M.; Olzmann, M. J. Phys. Chem. A 2013, 117, 8343.  doi: 10.1021/jp405724a

    13. [13]

      Alvarez-Idaboy, J. R.; Mora-Diez, N.; Vivier-Bunge, A. J. Am. Chem. Soc. 2000, 122, 3715.  doi: 10.1021/ja993693w

    14. [14]

      Galano, A.; Alvarez-Idaboy, J. R.; Francisco-Márquez, M. J. Phys. Chem. A 2010, 114, 7525.  doi: 10.1021/jp103575f

    15. [15]

      Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A 2005, 109, 6031.

    16. [16]

      Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A 2007, 111, 5582.  doi: 10.1021/jp071412y

    17. [17]

      Shannon, R. J.; Taylor, S.; Goddard, A.; Blitz, M. A.; Heard, D. E. Phys. Chem. Chem. Phys. 2010, 12, 13511.  doi: 10.1039/c0cp00918k

    18. [18]

      Uc, V. H.; Alvarez-Idaboy, J. R.; Galano, A.; Garcia-Cruz, I.; Vivier-Bunge, A. J. Phys. Chem. A 2006, 110, 10155.  doi: 10.1021/jp062775l

    19. [19]

      Iuga, C.; Galano, A.; Vivier-Bunge, A. Chem. Phys. Chem. 2008, 9, 1453.  doi: 10.1002/cphc.v9:10

    20. [20]

      Galano, A.; Alvarez-Idaboy, J. R.; Ruiz-Santoyo, M. E.; Vivier-Bunge, A. J. Phys. Chem. A 2002, 106, 9520.  doi: 10.1021/jp020297i

    21. [21]

      Olivella, S.; Sole, A. J. Chem. Theory. Comput. 2008, 4, 941.  doi: 10.1021/ct8000798

    22. [22]

      Vega-Rodriguez, A.; Alvarez-Idaboy, J. R. Phys. Chem. Chem. Phys. 2009, 11, 7649.  doi: 10.1039/b906692f

    23. [23]

      Uc, V. H.; García-Cruz, I.; Hernandez-Laguna, A.; Vivier-Bunge, A. J. Phys. Chem. A 2000, 104, 7847.  doi: 10.1021/jp993678d

    24. [24]

      Singleton, D. L.; Cvetanovic, R. J. J. Am. Chem. Soc. 1976, 98, 6812.  doi: 10.1021/ja00438a006

    25. [25]

      Dente, M.; Bozzano, G.; Faravelli, T.; Marongiu, A.; Pierucci, S.; Ranzi, E. Adv. Chem. Eng. 2007, 32, 51.  doi: 10.1016/S0065-2377(07)32002-4

    26. [26]

      Niki, H.; Maker, P. D.; Savage, C. M.; Breltenbach, L. P. J. Phys. Chem. 1983, 87, 2190.  doi: 10.1021/j100235a030

    27. [27]

      Vaghjiani, G. L.; Ravishankara, A. R. J. Phys. Chem. 1989, 93, 1948.  doi: 10.1021/j100342a050

    28. [28]

      Baulch, D. L.; Bowman, C. T.; Cobos, C. J.; Cox, R. A.; Just, T.; Kerr, J. A.; Pilling, M. J.; Stocker, D.; Troe, J.; Tsang, W.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data. 2005, 34, 757.  doi: 10.1063/1.1748524

    29. [29]

      Luo, J.; Jia, X.; Gao, Y.; Song, G.; Yu, Y.; Wang, R.; Pan, X. J. Comput. Chem. 2011, 32, 987.  doi: 10.1002/jcc.21684

    30. [30]

      Truong, T. N. J. Chem. Phys. 2000, 113, 4957.  doi: 10.1063/1.1287839

    31. [31]

      Muszyńska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N. J. Phys. Chem. A 2009, 113, 8327.  doi: 10.1021/jp903762x

    32. [32]

      Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2006, 110, 473.  doi: 10.1021/jp051280d

    33. [33]

      Wang, B. Y.; Li, Z. R.; Tan, N. X.; Yao, Q.; Li, X. Y. J. Phys. Chem. A 2013, 117, 3279.  doi: 10.1021/jp400924w

    34. [34]

      Sun, X. H.; Yao, Q.; Li, Z. R.; Wang, J. B.; Li, X. Y. Theor. Chem. Acc. 2017, 136, 64.  doi: 10.1007/s00214-017-2086-y

    35. [35]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. A. ; Nakatsuji, H. ; Caricato, M. ; Li, X. ; Hratchian, H. P. ; Izmaylov, A. F. ; Bloino, J. ; Zheng, G. ; Sonnenberg, J. L. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, Jr. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Montgomery, J. A. ; J. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. ; Heyd, J. J. ; Brothers, E. ; Kudin, K. N. ; Staroverov, V. N. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Rega, N. ; Millam, J. M. ; Klene, M. ; Knox, J. E. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Zakrzewski, V. G. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Dapprich, S. ; Daniels, A. D. ; Farkas, Ö. ; Foresman, J. B. ; Ortiz, J. V. ; Cioslowski, J. ; Fox, D. J. Gaussian 09, Revision A. 1, Gaussian Inc., Wallingford, CT, 2009.

    36. [36]

      Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683.  doi: 10.1021/jp073974n

    37. [37]

      Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45.  doi: 10.1016/S0009-2614(98)00866-5

    38. [38]

      Huh, S. B.; Lee, J. S. J. Chem. Phys. 2003, 118, 3035.  doi: 10.1063/1.1534091

    39. [39]

      Wigner, E. J. Chem. Phys. 1937, 5, 720.  doi: 10.1063/1.1750107

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(25)
  • Abstract views(1989)
  • HTML views(446)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return