Citation: Zhu Xuewei, Cui Xiaoyu, Cai Wensheng, Shao Xueguang. Temperature Dependent Near Infrared Spectroscopy for Understanding the Hydrogen Bonding of Amines[J]. Acta Chimica Sinica, ;2018, 76(4): 298-302. doi: 10.6023/A18010003 shu

Temperature Dependent Near Infrared Spectroscopy for Understanding the Hydrogen Bonding of Amines

  • Corresponding author: Shao Xueguang, xshao@nankai.edu.cn
  • Received Date: 3 January 2018
    Available Online: 5 April 2018

    Fund Project: the National Natural Science Foundation of China 21775046Project supported by the National Natural Science Foundation of China (Nos. 21475068 and 21775046)the National Natural Science Foundation of China 21475068

Figures(6)

  • Temperature dependent near-infrared (NIR) spectroscopy has been developed for structural analyses, especially for the study of hydrogen bonding, due to the distinct influence of temperature on both intra-and inter-molecular interactions. In this work, the hydrogen bonding of primary aliphatic amines (amylamine, hexylamine and heptylamine) were studied using the NIR spectra measured from 25 to 80℃ with a step of 5℃. Continuous wavelet transform (CWT) was applied to enhance the resolution of the NIR spectra, and independent component analysis (ICA) was adopted for analyzing the temperature effect. High resolution spectra were obtained by CWT, from which the peaks of free and hydrogen-bonded NH groups can be identified. The results obtained by ICA show that three independent components (ICs) can be obtained, corresponding to the spectral information of the free, linearly and cyclically hydrogen-bonded NH groups, respectively. Therefore, with the reconstructed spectra from the three ICs, the variation of the three forms of NH groups with temperature can be analyzed. When temperature increases, the hydrogen-bonded NH groups transform into the free form, and the cyclic form dissociates through the linear form. Furthermore, NIR spectra of the amines in carbon tetrachloride (CCl4) solution were measured at 25℃ in the concentration range of 0.1~1.0 mol/L. The three ICs can also be obtained by ICA from the spectra after CWT. From the variation of the ICs with concentration, it was shown that NH groups in the amines prefer to be linearly aggregated at low concentration, but the cyclic aggregation increases with the increase of concentration. In addition, a comparison was performed on the results obtained by ICA from the spectra of the three amines measured at different temperatures. The result shows that there is no obvious difference for the temperature effect of the three amines, the variation of the three forms of NH groups with temperature, however, is different. With the increase of the carbon chain length, the variation of free and cyclically hydrogen-bonded NH group slows down, but there is a slight increase for the change rate of linearly hydrogen-bonded NH group. Therefore, temperature dependent near-infrared (NIR) spectroscopy may provide a new tool for studying the hydrogen bonding in liquid and solution samples with the help of chemometric calculations. The method may be promising for analyzing the complicated interactions in bio-systems, particularly the hydrogen bonding or inter-and intra-molecular interactions.
  • 加载中
    1. [1]

      Wang, Y.; Murayama, K.; Myojo, Y.; Tsenkova, R.; Hayashi, N.; Ozaki, Y. J. Phys. Chem. B 1998, 102, 6655.  doi: 10.1021/jp9816115

    2. [2]

      Wu, Y. Q.; Czarnik-Matusewicz, B.; Murayama, K.; Ozaki, Y. J. Phys. Chem. B 2000, 104, 5840.  doi: 10.1021/jp000537z

    3. [3]

      Yuan, B.; Murayama, K.; Wu, Y. Q.; Tsenkova, R.; Dou, X. M.; Era, S.; Ozaki, Y. Appl. Spectrosc. 2003, 57, 1223.  doi: 10.1366/000370203769699072

    4. [4]

      Xu, Y.; Wu, P. Y. Acta Chim. Sinica 2008, 66, 1903(in Chinese).  doi: 10.3321/j.issn:0567-7351.2008.16.010
       

    5. [5]

      Shao, X. G.; Kang, J.; Cai, W. S. Talanta 2010, 82, 1017.  doi: 10.1016/j.talanta.2010.06.009

    6. [6]

      Kang, J.; Cai, W. S.; Shao, X. G. Talanta 2011, 85, 420.  doi: 10.1016/j.talanta.2011.03.089

    7. [7]

      Shan, R. F.; Zhao, Y.; Fan, M. L.; Liu, X. W.; Cai, W. S.; Shao, X. G. Talanta 2015, 131, 170.  doi: 10.1016/j.talanta.2014.07.081

    8. [8]

      Cui, X. Y.; Cai, W. S.; Shao, X. G. RSC Adv. 2016, 6, 105729.  doi: 10.1039/C6RA18912A

    9. [9]

      Cui, X. Y.; Liu, X. W.; Yu, X. M.; Cai, W. S.; Shao, X. G. Anal. Chim. Acta 2017, 957, 47.  doi: 10.1016/j.aca.2017.01.004

    10. [10]

      Liu, X. W.; Cui, X. Y.; Yu, X. M.; Cai, W. S.; Shao, X. G. Chin. Chem. Lett. 2017, 28, 1447.  doi: 10.1016/j.cclet.2017.03.021

    11. [11]

      Qi, L. H.; Cai, W. S.; Shao, X. G. Acta Chim. Sinica 2016, 74, 172. (in Chinese).
       

    12. [12]

      Wei, Y. R.; Yang, X. D.; Ma, Y. R.; Wang, S. F.; Yuan, Q. Chin. J. Chem. 2016, 34, 558.  doi: 10.1002/cjoc.v34.6

    13. [13]

      Czarnecki, M. A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Chem. Rev. 2015, 115, 9707.  doi: 10.1021/cr500013u

    14. [14]

      Segtnan, V. H.; Šašić, Š.; Isaksson, T.; Ozaki, Y. Anal. Chem. 2001, 73, 3153.  doi: 10.1021/ac010102n

    15. [15]

       

    16. [16]

      Czarnik-Matusewicz, B.; Pilorz, S. Vib. Spectrosc. 2006, 40, 235.  doi: 10.1016/j.vibspec.2005.10.002

    17. [17]

      Czarnecki, M. A. J. Phys. Chem. A 2000, 104, 6356.  doi: 10.1021/jp000407q

    18. [18]

      Pauling, L.; Corry, R. B.; Branson, H. R. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205.  doi: 10.1073/pnas.37.4.205

    19. [19]

      Watson, J. D.; Crick, F. H. Nature 1953, 171, 737.  doi: 10.1038/171737a0

    20. [20]

      Conley, R. T. Infrared Spectroscopy, Allyn and Bacon, Boston, MA, 1996, Chapter 7.

    21. [21]

      Sinsheimer, J. E.; Keuhnelian, A. M. Anal. Chem. 1974, 46, 89.  doi: 10.1021/ac60337a011

    22. [22]

      Kang, J.; Cai, W. S.; Shao, X. G. Talanta 2011, 85, 420.  doi: 10.1016/j.talanta.2011.03.089

    23. [23]

      Shao, X. G.; Leung, A. K. M.; Chau, F. T. Acc. Chem. Res. 2003, 36, 276.  doi: 10.1021/ar990163w

    24. [24]

      Shan, R. F.; Cai, W. S.; Shao, X. G. Chemon. Intell. Lab. Syst. 2014, 131, 31.  doi: 10.1016/j.chemolab.2013.12.002

    25. [25]

      Ni, Y. N.; Wang, Y.; Kokot, S. Talanta 2009, 78, 432.  doi: 10.1016/j.talanta.2008.11.035

    26. [26]

      Peng, D.; Xu, K. X.; Li, C. X. Spectrosc. Spect. Anal. 2008, 28, 825(in Chinese).  doi: 10.3964/j.issn.1000-0593.2008.04.026

    27. [27]

      Ma, C. X.; Shao, X. G. J. Chem. Inf. Comput. Sci. 2004, 44, 907.  doi: 10.1021/ci034211+

    28. [28]

      Shao, X. G.; Wang, F.; Chen, D.; Su, Q. D. Anal. Bioanal. Chem. 2004, 378, 1382.  doi: 10.1007/s00216-003-2397-9

    29. [29]

      Shao, X. G.; Ma, C. X. Chemom. Intell. Lab. Syst. 2003, 69, 157.  doi: 10.1016/j.chemolab.2003.08.001

    30. [30]

      Stordrange, L.; Christy, A. A.; Kvalheim, O. M.; Shen, H. L.; Liang, Y. Z. J. Phys Chem. A 2002, 106, 8543.  doi: 10.1021/jp013670f

    31. [31]

      Comon, P. Signal Process. 1994, 36, 287.  doi: 10.1016/0165-1684(94)90029-9

    32. [32]

      Chen, J.; Wang, X. Z. J. Chem. Inf. Comput. Sci. 2001, 41, 992.  doi: 10.1021/ci0004053

    33. [33]

      Shao, X. G.; Wang, W.; Hou, Z. Y.; Cai, W. S. Talanta 2006, 69, 676.  doi: 10.1016/j.talanta.2005.10.039

    34. [34]

      Fang, L. M.; Lin, M. Acta Chim. Sinica 2008, 66, 1791(in Chinese).
       

    35. [35]

      Pasadakis, N.; Kardamakis, A. A. Anal. Chim. Acta 2006, 578, 250.  doi: 10.1016/j.aca.2006.06.072

    36. [36]

      Bi, X.; Li, T. H.; Wu, L. Chem. J. Chin. Univ. 2004, 25, 1023(in Chinese).  doi: 10.3321/j.issn:0251-0790.2004.06.006

    37. [37]

      Shao, X. G.; Wang, G. Q.; Wang, S. F.; Su, Q. D. Anal. Chem. 2014, 76, 5143.

    38. [38]

      Wang, G.; Cai, W. S.; Shao, X. G. Chemom. Intell. Lab. Syst. 2006, 82, 137.  doi: 10.1016/j.chemolab.2005.05.009

    39. [39]

      Zhang, M. J.; Tong, P. J.; Wang, W. M.; Geng, J. P.; Du, Y. P. Chemom. Intell. Lab. Syst. 2011, 105, 207.  doi: 10.1016/j.chemolab.2011.01.007

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(23)
  • Abstract views(1410)
  • HTML views(294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return