Citation: Ye Changqing, Chen Shuoran, Li Fengyu, Ge Jie, Yong Peiyi, Qin Meng, Song Yanlin. Research Progress of High-performance Multi-analyte Recognitions and Multivariate Analysis[J]. Acta Chimica Sinica, ;2018, 76(4): 237-245. doi: 10.6023/A17120555 shu

Research Progress of High-performance Multi-analyte Recognitions and Multivariate Analysis

  • Corresponding author: Li Fengyu, forrest@iccas.ac.cn Song Yanlin, ylsong@iccas.ac.cn
  • Received Date: 26 December 2017
    Available Online: 22 April 2018

    Fund Project: Natural Science Foundation of Jiangsu Province BK20160358Six Talent Summits Project of Jiangsu Province XCL-79the "Strategic Priority Research Program" of Chinese Academy of Sciences XDA09020000the National Natural Science Foundation of China 51603141Natural Science Foundation of Jiangsu Province-Excellent Youth Foundation BK20170065Project supported by Natural Science Foundation of Jiangsu Province-Excellent Youth Foundation (No. BK20170065), Natural Science Foundation of Jiangsu Province (No. BK20160358), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 17KJA430016), Six Talent Summits Project of Jiangsu Province (No.XCL-79), Qing Lan Project, the National Natural Science Foundation of China (Nos. 51603141, 51473172, 51473173) and the "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA09020000)the National Natural Science Foundation of China 51473173the National Natural Science Foundation of China 51473172Natural Science Foundation of the Higher Education Institutions of Jiangsu Province 17KJA430016

Figures(7)

  • The traditional "lock and key" sensor models pursue the "one to one" sensing response for the specific testing and the low limitation of detection, which neglect the practical sample detecting application with multi-analytes and complex contains. Utilizing multi-sensor compounds, the sensor array chip offers multiplex differential sensing response signal to process the multi-analytes discrimination. The critical requirement for successful multi-analyte recognition is to acquire abundant sensing information. However, the "multi to multi" sensor chip needs large numbers of serial probe compounds, which involve com-plicated chemical synthesis and valid compound screening. Inspired by the human sense organ, scientists developed various "cross-reactive" sensor arrays. Here, The recent research progress of multi-analysis and "one to multi" high-efficient detection were introduced. From chemical information excavation, physical signal enhancement, devices integration design, we summarize and forecast the multi-analysis advancement and intelligent sensors.
  • 加载中
    1. [1]

      Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595.  doi: 10.1021/cr980102w

    2. [2]

      Gardner, J. W. ; Bartlett, P. N. Electronic Noses: Principles and Applications, Oxford University Press, Oxford, 1999, p. 245.

    3. [3]

      Taruno, A.; Vingtdeux, V.; Ohmoto, M.; Ma, Z. Nature 2013, 495, 223.  doi: 10.1038/nature11906

    4. [4]

      Persaud, K.; Dodd, G. Nature 1982, 299, 352.  doi: 10.1038/299352a0

    5. [5]

      Stears, R. L.; Martinsky, T.; Schena, M. Nat. Med. 2003, 9, 140.  doi: 10.1038/nm0103-140

    6. [6]

      Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14.  doi: 10.1039/B505518K

    7. [7]

      Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. 2001, 40, 3118.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Palacios, M. A.; Nishiyabu, R.; Marquez, M.; Anzenbacher, P. J. Am. Chem. Soc. 2007, 129, 7538.  doi: 10.1021/ja0704784

    9. [9]

      Rakow, N. A.; Suslick, K. S. Nature 2000, 406, 710.  doi: 10.1038/35021028

    10. [10]

      Folmer-Andersen, J. F.; Kitamura, M.; Anslyn, E. V. J. Am. Chem. Soc. 2006, 128, 5652.  doi: 10.1021/ja061313i

    11. [11]

      Wu, Y.-Y.; Na, N.; Zhang, S.-C.; Wang, X.; Liu, D.; Zhang, X.-R. Anal. Chem. 2009, 81, 961.  doi: 10.1021/ac801733k

    12. [12]

      Han, M.; Gao, X.; Su, J.; Nie, S. Nat. Biotechnol. 2001, 19, 631.  doi: 10.1038/90228

    13. [13]

      Rout, B.; Unger, L.; Armony, G.; Iron, M. A.; Margulies, D. Angew. Chem., Int. Ed. 2012, 51, 12477.  doi: 10.1002/anie.201206374

    14. [14]

      You, C. C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.; Kim, I. B.; Erdogan, B.; Krovi, S. A.; Bunz, U. H. F.; Rotello, V. M. Nat. Nanotechnol. 2007, 2, 318.  doi: 10.1038/nnano.2007.99

    15. [15]

      Palacios, M. A.; Wang, Z.; Montes, V. A. J. Am. Chem. Soc. 2008, 130, 10307.  doi: 10.1021/ja802377k

    16. [16]

      Rout, B.; Unger, L.; Armony, G. Angew. Chem., Int. Ed. 2012, 51, 12477.  doi: 10.1002/anie.201206374

    17. [17]

      Kim, J.; Wu, X.; Herman, M. R. Anal. Chim. Acta 1998, 370, 251.  doi: 10.1016/S0003-2670(98)00292-X

    18. [18]

      Wang, Z.; Palacios, M. A.; Anzenbacher, P. Anal. Chem. 2008, 80, 7451.  doi: 10.1021/ac801165v

    19. [19]

      Huang, Y.; Li, F.; Qin, M. Angew. Chem., Int. Ed. 2013, 52, 7296.  doi: 10.1002/anie.201302311

    20. [20]

      Anzenbacher, P.; Lubal, P.; Bucek, P. Chem. Soc. Rev. 2010, 39, 3954.  doi: 10.1039/b926220m

    21. [21]

      Smyth, H.; Cozzolino, D. Chem. Rev. 2012, 113, 1429.
       

    22. [22]

      Irie, M. Chem. Rev. 2000, 100, 1685.  doi: 10.1021/cr980069d

    23. [23]

      Wang, S.; Shen, W.; Feng, Y.-L.; Tian, H. Chem. Commun. 2006, 14, 1497.
       

    24. [24]

      Jiang, G.-Y.; Wang, S.; Yuan, W.-F.; Zhao, Z.; Duan, A.-J.; Xu, C.-M.; Jiang, L.; Song, Y.-L. Eur. J. Org. Chem. 2007, 2007, 2064.  doi: 10.1002/(ISSN)1099-0690

    25. [25]

      Kopelman, R. A.; Snyder, S. M.; Frank, N. L. J. Am. Chem. Soc. 2003, 125, 13684.  doi: 10.1021/ja036306y

    26. [26]

      Wagner, K.; Byrne, R.; Zanoni, M. J. Am. Chem. Soc. 2011, 133, 5453.  doi: 10.1021/ja1114634

    27. [27]

      Huang, Y.; Li, F.-Y.; Ye, C.-Q.; Qin, M.; Ran, W.; Song, Y.-L. Sci. Rep. 2015, 5, 9724.  doi: 10.1038/srep09724

    28. [28]

      Fischer, E.; Hirshberg, Y. J. Chem. Soc. 1952, 868, 4522.

    29. [29]

      Fries, K. H.; Driskell, J. D.; Samanta, S.; Locklin, J. Anal. Chem. 2010, 82, 3306.  doi: 10.1021/ac1001004

    30. [30]

      Rusin, O.; St. Luce, N. N.; Agbaria, R. A. J. Am. Chem. Soc. 2004, 126, 438.  doi: 10.1021/ja036297t

    31. [31]

      Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.; Fa-kayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2005, 127, 15949.  doi: 10.1021/ja054962n

    32. [32]

      Yang, X.; Guo, Y.; Strongin, R. M. Angew. Chem., Int. Ed. 2011, 50, 10690.  doi: 10.1002/anie.201103759

    33. [33]

      Zhang, M.; Yu, M.-X.; Li, F.-Y.; Zhu, M.-W.; Li, M.-Y.; Gao, Y.-H.; Li, L.; Liu, Z.-Q.; Zhang, J.-P.; Zhang, D.-P.; Yi, T.; Huang, C.-H. J. Am. Chem. Soc. 2007, 129, 10322.  doi: 10.1021/ja073140i

    34. [34]

      Jung, H. S.; Pradhan, T.; Han, J. H.; Heo, K. J.; Lee, J. H.; Kang, C.; Kim, J. S. Biomaterials 2012, 33, 8495.  doi: 10.1016/j.biomaterials.2012.08.009

    35. [35]

      Aït-Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 11296.  doi: 10.1021/ja011905v

    36. [36]

      Hortalá, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. J. Am. Chem. Soc. 2003, 125, 20.  doi: 10.1021/ja027110l

    37. [37]

      Kong, H.; Liu, D.; Zhang, S.-C.; Zhang, X.-R. Anal. Chem. 2011, 83, 1867.  doi: 10.1021/ac200076c

    38. [38]

      Rochat, S.; Gao, J.; Qian, X.; Zaubitzer, F.; Severin, K. Chem. Eur. J. 2010, 16, 104.  doi: 10.1002/chem.v16:1

    39. [39]

      Zhou, Y.; Yoon, J. Chem. Soc. Rev. 2012, 41, 52.  doi: 10.1039/C1CS15159B

    40. [40]

      Greene, N. T.; Shimizu, K. D. J. Am. Chem. Soc. 2005, 127, 5695.  doi: 10.1021/ja0468022

    41. [41]

      Pavel, A.; Li, F.-Y.; Palacios, M. A. Angew. Chem., Int. Ed. 2012, 51, 2345.  doi: 10.1002/anie.v51.10

    42. [42]

      Dean, K. E. S.; Klein, G.; Renaudet, O.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003, 13, 1653.  doi: 10.1016/S0960-894X(03)00280-4

    43. [43]

      Xu, X.; Goponenko, A. V.; Asher, S. A. J. Am. Chem. Soc. 2008, 130, 3113.  doi: 10.1021/ja077979+

    44. [44]

      Pathak, R. K.; Dessingou, J.; Rao, C. P. Anal. Chem. 2012, 84, 8294.  doi: 10.1021/ac301821c

    45. [45]

      Qin, M.; Li, F.-Y.; Huang, Y.; Ran, W.; Han, D.; Song, Y.-L. Anal. Chem. 2014, 87, 837.
       

    46. [46]

      Kopelman, R. A.; Snyder, S. M.; Frank, N. L. J. Am. Chem. Soc. 2003, 125, 13684.  doi: 10.1021/ja036306y

    47. [47]

      Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.  doi: 10.1103/PhysRevLett.58.2059

    48. [48]

      John, S. Phys. Rev. Lett. 1987, 58, 2486.  doi: 10.1103/PhysRevLett.58.2486

    49. [49]

      Burgess, I. B.; Mishchenko, L.; Hatton, B. D.; Kolle, M.; Loncar, M.; Aizenberg, J. J. Am. Chem. Soc. 2011, 133, 12430.  doi: 10.1021/ja2053013

    50. [50]

      Chen, J. I. L.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2006, 18, 1915.  doi: 10.1002/(ISSN)1521-4095

    51. [51]

      Mihi, A.; Zhang, C.; Braun, P. V. Angew. Chem., Int. Ed. 2011, 50, 5712.  doi: 10.1002/anie.201100446

    52. [52]

      Ward, A. J.; Pendry, J. B. Phys. Rev. B 1998, 58, 7252.  doi: 10.1103/PhysRevB.58.7252

    53. [53]

      John, S.; Quang, T. Phys. Rev. A 1994, 50, 1764.  doi: 10.1103/PhysRevA.50.1764

    54. [54]

      Thijssen, M. S.; Sprik, R.; Wijnhoven, J. E. G. J.; Megens, M.; Narayanan, T.; Lagendijk, A.; Vos, W. L. Phys. Rev. Lett. 1999, 83, 2730.  doi: 10.1103/PhysRevLett.83.2730

    55. [55]

      Bardez, E.; Devol, I.; Larrey, B.; Valeur, B. J. Phys. Chem. B 1997, 101, 7786.  doi: 10.1021/jp971293u

    56. [56]

      Qin, M.; Huang, Y.; Li, Y.-N.; Su, M.; Chen, B.-D.; Sun, H.; Yong, P.-Y.; Ye, C.-Q.; Li, F.-Y.; Song, Y.-L. Angew. Chem., Int. Ed. 2016, 55, 6911.  doi: 10.1002/anie.201602582

    57. [57]

      Bonifacio, L. D.; Puzzo, D. P.; Breslav, S.; Willey, B. M.; McGeer, A.; Ozin, G. A. Adv. Mater. 2010, 22, 1351.  doi: 10.1002/adma.200902763

    58. [58]

      Xie, Z.; Cao, K.; Zhao, Y.; Bai, L.; Gu, H.; Xu, H.; Gu, Z.-Z. Adv. Mater. 2014, 26, 2413.  doi: 10.1002/adma.v26.15

    59. [59]

      Hu, X.-B.; Huang, J.; Zhang, W.-X.; Li, M.-H.; Tao, C.-G.; Li, G.-T. Adv. Mater. 2008, 20, 4074.  doi: 10.1002/adma.v20:21

    60. [60]

      Cui, J.-C.; Zhu, W.; Gao, N.; Li, J.; Yang, H.-W.; Jiang, Y.; Seidel, P.; Ravoo, B. J.; Li, G.-T. Angew. Chem., Int. Ed. 2014, 53, 3844  doi: 10.1002/anie.201308959

    61. [61]

      Cui, J.-C.; Gao, N.; Wang, C.; Zhu, W.; Li, J.; Wang, H.; Seidel, P.; Ravoo, B. J.; Li, G.-T. Nanoscale 2014, 6, 11995.  doi: 10.1039/C4NR03095H

    62. [62]

      Zhang, Y.-Q.; Fu, Q.-Q.; Ge, J.-P. Nat. Commun. 2015, 6, 7510.  doi: 10.1038/ncomms8510

    63. [63]

      Kim, F. S.; Ren, G.; Jenekhe, S. A. Chem. Mater. 2010, 23, 682.
       

    64. [64]

      Ding, B.; Wang, M.-R.; Wang, X.-F.; Yu, J.-Y.; Sun, G. Mater. Today 2010, 13, 16.
       

    65. [65]

      Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.-K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z.-N. Nat. Nanotechnol. 2011, 6, 788.  doi: 10.1038/nnano.2011.184

    66. [66]

      Li, Y.-D.; Li, Y.-N.; Su, M.; Li, W.-B.; Li, Y.-F.; Li, H.-Z.; Qian, X.; Zhang, X.-Y.; Li, F.-Y.; Song, Y.-L. Adv. Electron. Mater. 2017, 3, 1700253.  doi: 10.1002/aelm.201700253

    67. [67]

      Shen, W.-Z.; Li, M.-Z.; Ye, C.-Q.; Jiang, L.; Song, Y.-L. Lab. Chip. 2012, 12, 3089.  doi: 10.1039/c2lc40311k

    68. [68]

      Hou, J.; Zhang, H.-C.; Yang, Q.; Li, M.-Z.; Song, Y.-L.; Jiang, L. Angew. Chem., Int. Ed. 2014, 53, 5791.  doi: 10.1002/anie.201400686

    69. [69]

      Hou, J.; Zhang, H.-C.; Yang, Q.; Li, M.-Z.; Jiang, L.; Song, Y.-L. Small 2015, 11, 2738.  doi: 10.1002/smll.201403640

    70. [70]

      Maheshwari, V.; Saraf, R. F. Science 2006, 312, 1501.  doi: 10.1126/science.1126216

    71. [71]

      Windmiller, J. R.; Wang, J. Electroanalysis 2013, 25, 29.  doi: 10.1002/elan.201200349

    72. [72]

      Su, M.; Li, F.-Y.; Chen, S.-R.; Huang, Z.-D.; Qin, M.; Li, W.-B.; Zhang, X.-Y.; Song, Y.-L. Adv. Mater. 2016, 28, 1369.  doi: 10.1002/adma.v28.7

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    3. [3]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    4. [4]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    7. [7]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    20. [20]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

Metrics
  • PDF Downloads(13)
  • Abstract views(1215)
  • HTML views(300)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return