Citation: Li Pan, Liu Jian, Sun Weiyi, Tao Zhanliang, Chen Jun. Synthesis of Coin-like Vanadium Disulfide and Its Sodium Storage Performance[J]. Acta Chimica Sinica, ;2018, 76(4): 286-291. doi: 10.6023/A17120533 shu

Synthesis of Coin-like Vanadium Disulfide and Its Sodium Storage Performance

  • Corresponding author: Tao Zhanliang, taozhl@nankai.edu.cn
  • Received Date: 6 December 2017
    Available Online: 7 April 2018

    Fund Project: Project supported by the National Key R & D Program (No. 2016YFB0901502), National Natural Science Foundation of China (Nos. 51771094, 51371100) and 111 Project (No. B12015)National Natural Science Foundation of China 51371100the National Key R & D Program 2016YFB0901502111 Project B12015National Natural Science Foundation of China 51771094

Figures(4)

  • Sodium ion batteries (SIBs) have become one of candidates for post-lithium batteries due to the rich sodium resources and the similar physico-chemical properties between sodium and lithium, while the larger sodium ion radius affects the kinetic properties and ion mobility of the sodium ion batteries system, so finding the right electrode material has become the key to develop SIBs. Vanadium Disulfide (VS2) as a typical family member of transition metal chalcogenides (TMCs) has the graphene-like layered structure and excellent electrical conductivity, which provides sufficient space for the storage of sodium ions and ensures its high performance as anode for SIBs. In this work, we used the combination of hydrothermal method and ultrasonic stripping method to prepared three different Coin-like VS2 (VS2-Long, VS2-Middle, and VS2-Short) for sodium storage research. The results show that Coin-like VS2-Short (VS2-S) with the lowest stacking degree can expose more active sites and has a more stable structure so that it has a high capacity of 410 mAh·g-1 after 300 cycles at 100 mA·g-1 and a high rate capability of 333 mAh·g-1 even at 2000 mA·g-1. In addition, we also studied the mechanism of vanadium disulfide as electrode material of sodium ion batteries by using the ex-situ X-ray diffraction (XRD) and transmission electron microscopy (TEM). During discharge process, sodium ion was inserted into the layer of VS2 resulting in NaxVS2 at the voltage of 2.5~1.0 V, and then, NaxVS2 convert to sodium sulfide and vanadium between the voltage of 1.0~0.2 V, on the opposite charging process, sodium sulfide with vanadium will convert to NaxVS2 firstly and then vanadium disulfide will appeared again with the sodium ion deserted from the NaxVS2. This means that vanadium disulfide appears to be an insertion-conversion mechanism between 0.2~2.5 V.
  • 加载中
    1. [1]

      Xiang, X. D.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343.  doi: 10.1002/adma.201501527

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928.  doi: 10.1126/science.1212741

    3. [3]

      Francisco, D. G.; Andreas, S.; Oriol, G. B. Renew. Sust. Energy Rev. 2012, 16, 2154.  doi: 10.1016/j.rser.2012.01.029

    4. [4]

      Chen, H. S.; Cong, T. N.; Yang, W. Prog. Nat. Sci. 2009, 19, 291.  doi: 10.1016/j.pnsc.2008.07.014

    5. [5]

      Nagelberg, A. S.; Worrell, W. L. J. Solid State Chem. 1979, 29, 345.
       

    6. [6]

      Shacklette, L. W.; Jow, T. R.; Townsend, L. J. Electrochem. Soc. 1985, 135, 2669.
       

    7. [7]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica 2014, 72, 21.
       

    8. [8]

      Xiang, X. D.; Lu, Y. Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154.
       

    9. [9]

      Lin, X. Y. ; Wang, Y. ; Chen, J. Acta Chim. Sinica 2017, 75, 979.

    10. [10]

      Tan, C. L.; Lai, Z. C.; Zhang, H. Adv. Mater. 2017, 29, 1701392.  doi: 10.1002/adma.v29.37

    11. [11]

      Liu, Z. M.; Lu, T. C.; Song, T.; Ungyu, P. Energy Environ. Sci. 2017, 10, 1576.  doi: 10.1039/C7EE01100H

    12. [12]

      Lu, Y.; Zhao, Q.; Zhang, N.; Lei, K.; Li, F.; Chen, J. Adv. Funct. Mater. 2016, 26, 911.  doi: 10.1002/adfm.v26.6

    13. [13]

      Liu, X.; Zhang, K.; Lei, K.; Lei, K.; Li, F.; Tao, Z. L.; Chen, J. Nano Res. 2016, 9(1), 198.  doi: 10.1007/s12274-016-0981-5

    14. [14]

      Wang, Q. H.; Kourosh, K. Z.; Andras, K.; Jonathan, N.; Michael, S. Nat. Nanotechnol. 2012, 7, 699.  doi: 10.1038/nnano.2012.193

    15. [15]

      Rout, C. S.; Kim, B. H.; Xu, X.; Yang, J.; Jeong, H. Y.; Odkhuu, D.; Park, N.; Cho, J.; Shin, H. S. J. Am. Chem. Soc. 2013, 135, 8720.  doi: 10.1021/ja403232d

    16. [16]

      Chang, K.; Chen, W. X. Chem. Commun. 2011, 47, 4252.  doi: 10.1039/c1cc10631g

    17. [17]

      Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296.  doi: 10.1021/ja201269b

    18. [18]

      Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y. Adv. Mater. 2012, 24, 1969.  doi: 10.1002/adma.201104681

    19. [19]

      Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y. J. Am. Chem. Soc. 2011, 133, 17832.  doi: 10.1021/ja207176c

    20. [20]

      Fang, W. Y.; Zhao, H. B.; Xie, Y. P.; Fang, J. H.; Xu, J. Q.; Chen, Z. W. ACS Appl. Mater. Interfaces 2015, 7, 13044.  doi: 10.1021/acsami.5b03124

    21. [21]

      He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; An, Q. Y.; Mai, L. Q. Adv. Energy Mater. 2017, 7, 1601920.  doi: 10.1002/aenm.v7.11

    22. [22]

      Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Liu, S. J.; Mai, L. Q. Nano Energy 2017, 35, 396.  doi: 10.1016/j.nanoen.2017.03.036

    23. [23]

      Chandra, S. R.; Ruchita, K.; Dattatray, J. L. Eur. J. Inorg. Chem. 2014, 5331.

    24. [24]

      Liu, X.; Shuai, H. L.; Huang, K. J. Anal. Methods 2015, 7, 8277.  doi: 10.1039/C5AY01793A

    25. [25]

      Rout, C. S.; Kim, B. H.; Xu, X.; Yang, J.; Jeong, H. Y.; Odkhuu, D.; Park, N.; Cho, J.; Shin, H. S. J. Am. Chem. Soc. 2013, 135, 8720.  doi: 10.1021/ja403232d

    26. [26]

      Li, Y.; Liang, Y.; Hernandez, F. C. R.; Yoo, H. D.; An, Q.; Yao, Y. Nano Energy 2015, 15, 453.  doi: 10.1016/j.nanoen.2015.05.012

    27. [27]

      Zhang, S. S. J. Mater. Chem. A 2015, 3, 7689.  doi: 10.1039/C5TA00623F

    28. [28]

      Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Adv. Mater. 2014, 26, 3854.  doi: 10.1002/adma.201306314

    29. [29]

      Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Angew. Chem., Int. Ed. 2014, 53, 12794.  doi: 10.1002/anie.201407898

    30. [30]

      Yang, C. H.; Ou, X.; Xiong, X. H.; Zheng, F. H.; Hu, R. Z.; Chen, Y.; Liu, M. L.; Huang, K. Energy Environ. Sci. 2017, 10, 107.  doi: 10.1039/C6EE03173K

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(38)
  • Abstract views(3005)
  • HTML views(809)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return