Citation: Ye Wenbo, Yan Zicong, Wan Changfeng, Hou Haoqing, Wang Zhiyong. A New Decarboxylation/Methylation Process of Cinnamic Acids[J]. Acta Chimica Sinica, ;2018, 76(2): 99-102. doi: 10.6023/A17110519 shu

A New Decarboxylation/Methylation Process of Cinnamic Acids

  • Corresponding author: Wan Changfeng, wanfeng@jxnu.edu.cn
  • Received Date: 30 November 2017
    Available Online: 28 February 2017

    Fund Project: the National Natural Science Foundation of China 21402068the National Natural Science Foundation of China 21472177the National Natural Science Foundation of China 21574060Project supported by the National Natural Science Foundation of China (Nos. 21402068, 21574060, 21472177)

Figures(1)

  • Decarboxylation reactions have been widely explored in recent ten years, and decarboxylative cascade reaction of cinnamic acids has also attracted much attention. Generally, this class of reaction includes two processes:radical addition and decarboxylation. The result of reaction can introduce kinds of functional groups on the benzene ring, such as halogen atom, nitro-group and trifluoromethyl. Following the continuous studies of our group on oxidative cascade reaction, especially the oxidative reaction in the absence of metal, herein we disclosed a decarboxylative oxidative cascade reaction of cinnamic acids under metal-free conditions. We employed K2CO3 as base, tert-butyl hydroperoxide (TBHP) as oxidant and DMSO/H2O as co-solvent, and cinnamic acids could be converted to propiophenone derivatives in moderate yield. To get an insight into the mechanism of this process, several controlled experiments were conducted. First, DMSO-d6 was employed under the standard conditions and no d-methyl was detected in the 1H NMR spectrum of product. It demonstrated that the methyl of product was derived from tert-butyl hydroperoxide. Subsequently, the reaction was carried out under nitrogen and oxygen atmosphere, and it was found that higher reaction efficiency was obtained in N2. The result indicated that methyl radical was easily quenched by oxygen. On the basis of experiment results, we proposed a plausible mechanism. First, tert-butyl hydroperoxide yielded methyl radical, then the reaction underwent radical addition and decarboxylation to generate the desired product. The reaction featured that tert-butyl hydroperoxide was used as oxidant and methylation reagent in this process, and the reaction proceeded under metal-free and aqueous phase condition. Therefore, it met the requirement of green chemistry. Meanwhile, the operation of reaction was also simple, for example, to a DMSO/H2O (0.5 mL/0.5 mL) solution of cinnamic acids (0.2 mmol) were successively added K2CO3 (0.3 mmol), TBHP (0.8 mmol). The reaction mixture was stirred at 100 ℃. Upon the completion, the desired product was purified by silica gel column chromatography.
  • 加载中
    1. [1]

      (a) Goossen, L. J. ; Thiel, W. R. ; Rodrıguez, N. ; Linder, C. ; Melzer, B. Adv. Synth. Catal. 2007, 349, 2241. (b) Cornella, J. ; Sanchez, C. ; Banawa, D. ; Larrosa, I. Chem. Commun. 2009, 7176. (c) Lu, P. F. ; Sanchez, C. ; Cornella, J. ; Larrosa, I. Org. Lett. 2009, 11, 5710.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      (a) Yin, J. ; Li, Y. ; Zhang, R. ; Jin, K. ; Duan, C. Synthesis-Structure 2014, 607. (b) Shang, X. J. ; Li, Z. ; Liu, Z. Q. Tetrahedron Lett. 2015, 56, 233.

    6. [6]

      (a) Telvekar, V. N. ; Arote, N. D. ; Herlekar, O. P. Synlett 2005, 2495. (b) Telvekar, V. N. ; Takale, B. S. Tetrahedron Lett. 2011, 52, 2394.

    7. [7]

      (a) Rao, A. S. ; Srinivas, P. V. ; Babu, K. S. ; Rao, J. M. Tetrahedron Lett. 2005, 46, 8141. (b) Ramgopal, S. ; Ramesh, K. ; Chakradhar, A. ; Reddy, N. M. ; Rajanna, K. C. Tetrahedron Lett. 2007, 48, 4043. (c) Rajanna, K. C. ; Ramesh, K. ; Ramgopal, S. ; Shylaja, S. ; Reddy, P. G. ; Saiprakash, P. K. Green Sustainable Chem. 2011, 1, 132.

    8. [8]

      (a) Rokade, B. V. ; Prabhu, K. R. J. Org. Chem. 2014, 79, 8110. (b) Guo, R. ; Gui, Q. ; Wang, D. ; Tan, Z. Catal. Lett. 2014, 144, 1377.

    9. [9]

      (a) Vinokurov, N. ; Michrowska, A. ; Szmigielska, A. ; Drzazga, Z. ; Wójciuk, G. ; Demchuk, O. M. ; Grela, K. ; Pietrusiewicz, K. M. ; Butensch n, H. Adv. Synth. Catal. 2006, 348, 931. (b) Al-Maksoud, W. ; Mesnager, J. ; Jaber, F. ; Pinel, C. ; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222. (c) Evano, G. ; Tadiparthiand, K. ; Couty, F. ; Chem. Commun. 2011, 47, 179. (d) Jouvin, K. ; Coste, A. ; Bayle, A. ; Legrand, F. ; Karthikeyan, G. ; Tadiparthiand, K. ; Evano, G. Organometallics 2012, 31, 7933.

    10. [10]

      (a) Yang, Y. ; Yao, J. ; Zhang, Y. Org. Lett. 2013, 15, 3206. (b) Yang, Y. ; Chen, L. ; Zhang, Z. ; Zhang, Y. Org. Lett. 2011, 13, 1342.

    11. [11]

      Rong, G. W.; Liu, D. F.; Lu, L. H.; Yan, H.; Zheng, Y.; Chen, J.; Mao, J. C. Tetrahedron 2014, 70, 5033.  doi: 10.1016/j.tet.2014.06.014

    12. [12]

      Ji, J.; Liu, P.; Sun, P. P. Chem. Commun. 2015, 51, 7546.  doi: 10.1039/C5CC01762A

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(32)
  • Abstract views(3097)
  • HTML views(757)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return