Citation: Deng Bangwei, Sun Daming, Wan Qi, Wang Hao, Chen Tao, Li Xuan, Qu Meizhen, Peng Gongchang. Review of Electrolyte Additives for Ternary Cathode Lithium-ion Battery[J]. Acta Chimica Sinica, ;2018, 76(4): 259-277. doi: 10.6023/A17110517 shu

Review of Electrolyte Additives for Ternary Cathode Lithium-ion Battery

  • Corresponding author: Wan Qi, qwan861016@126.com Peng Gongchang, gpc0102@163.com
  • Received Date: 29 November 2017
    Available Online: 22 April 2018

    Fund Project: the Collaborative Innovation Project of Industrial Cluster of Chengdu, Sichuan 2017-XT00-00001-GXthe National Natural Science Foundation of China 51474196Project supported by the National Natural Science Foundation of China (No. 51474196) and the Collaborative Innovation Project of Industrial Cluster of Chengdu, Sichuan (2017-XT00-00001-GX)

Figures(20)

  • Ternary layered oxides {Li[NixCoyMz]O2 (0 < x, y, z < 1, M=Mn, NMC; M=Al, NCA)} are one of the most promising cathode materials of lithium-ion batteries (LIBs). However, in the traditional electrolyte system, they will undergo dramatic structural changes and interface side reactions at high potential and high temperature, which will bring great challenges to their practical application, especially for their cycle life and safety. Developing appropriate electrolyte additive is one of the most economical and effective methods to improve the electrochemical performance of LIBs. Based on the intrinsic structure of material, electrolyte additives used for NMC and NCA ternary cathode and their reaction mechanism in the past 5 years are reviewed in this paper, which include vinylene carbonate (VC), fluoro-compounds, new lithium salts, P-based, B-based, S-based, nitrile, others and combinative additives. Among them, VC becomes a kind of universal additive, which can improve the efficiency and cycle life at low voltage and normal temperature. Fluoro-compounds have been developed from mono substituted such as Fluorinated ethylene carbonate (FEC) to multi-fluorine substituted, which can improve the stability of electrode/electrolyte interface under high voltage. New lithium salt additives are mainly used to improve the film forming performance under high voltage and high temperature, such as Lithium bis(fluorosulfonyl)imide (LiFSI), Lithium difluorophosphate (LiDFP). P-contained additives[such as Tris(trimethylsilyl) phosphite (TMSPi)] are mainly to improve the stability of anode-electrolyte interface, and it has obvious synergistic effect when they combined with additives such as VC. B-contained additives are mainly used to improve the dissociation degree and stability of lithium salt, such as Tris(trimethylsilyl)borate (TMSB). S-contained additives are mainly used to improve the ionic conductivity and stability of anode SEI film, such as Prop-1-ene-1, 3-sultone (PES). Nitriles are benefited from the strong electron withdrawing effect of -CN, which can improve the stability of the electrode/electrolyte interface at high voltage. Other types of additives are some heterocyclic compounds having film forming ability and various silanes which can eliminate HF and H2O. Combinative addi-tives are developed from VC based composite to PES and PBF (pyridine boron trifluoride) system, which can endure even harsher conditions.
  • 加载中
    1. [1]

      Zhang, S. S. J. Power Sources 2006, 162, 1379.  doi: 10.1016/j.jpowsour.2006.07.074

    2. [2]

      Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. ChemPhysChem 2014, 15, 1956.  doi: 10.1002/cphc.v15.10

    3. [3]

      Xu, K. Chem. Rev. 2014, 114, 11503.  doi: 10.1021/cr500003w

    4. [4]

      Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem.-Int. Ed. 2015, 54, 4440.  doi: 10.1002/anie.201409262

    5. [5]

      Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Mater. Today 2015, 18, 252.  doi: 10.1016/j.mattod.2014.10.040

    6. [6]

      Hou, P.; Yin, J.; Ding, M.; Huang, J.; Xu, X. Small (Weinheim an der Bergstrasse, Germany) 2017, DOI:10.1002/smll.20170180210.1002/smll.201701802.  doi: 10.1002/smll.20170180210.1002/smll.201701802

    7. [7]

      Li, X.; Ge, W.-J.; Wang, H.; Qu, M.-Z. J. Inorg. Mater. 2017, 32, 113.
       

    8. [8]

      Ue, M. ; Sasaki, Y. ; Tanaka, Y. ; Morita, M. Electrolytes For Lithium and Lithium-Ion Batteries, Spinger, New York, 2014.

    9. [9]

      Burns, J. C.; Petibon, R.; Nelson, K. J.; Sinha, N. N.; Kassam, A.; Way, B. M.; Dahn, J. R. J. Electrochem. Soc. 2013, 160, A1668.  doi: 10.1149/2.031310jes

    10. [10]

      El Ouatani, L.; Dedryvere, R.; Siret, C.; Biensan, P.; Reynaud, S.; Iratcabal, P.; Gonbeau, D. J. Electrochem. Soc. 2009, 156, A103.  doi: 10.1149/1.3029674

    11. [11]

      Li, J.; Liu, H.; Xia, J.; Cameron, A. R.; Nie, M.; Botton, G. A.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A655.  doi: 10.1149/2.0651704jes

    12. [12]

      Burns, J. C.; Sinha, N. N.; Coyle, D. J.; Jain, G.; VanElzen, C. M.; Lamanna, W. M.; Xiao, A.; Scott, E.; Gardner, J. P.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A85.  doi: 10.1149/2.028202jes

    13. [13]

      Downie, L. E.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1782.  doi: 10.1149/2.0301412jes

    14. [14]

      Lee, W. J.; Prasanna, K.; Jo, Y. N.; Kim, K. J.; Kim, H. S.; Lee, C. W. PCCP 2014, 16, 17062.  doi: 10.1039/C4CP02075H

    15. [15]

      Xia, J.; Aiken, C. P.; Ma, L.; Kim, G. Y.; Burns, J. C.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1149.  doi: 10.1149/2.108406jes

    16. [16]

      Madec, L.; Petibon, R.; Tasaki, K.; Xia, J.; Sun, J. P.; Hill, I. G.; Dahn, J. R. PCCP 2015, 17, 27062.
       

    17. [17]

      Burns, J. C.; Sinha, N. N.; Jain, G.; Ye, H.; VanElzen, C. M.; Lamanna, W. M.; Xiao, A.; Scott, E.; Choi, J.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A1095.  doi: 10.1149/2.077207jes

    18. [18]

      Deshpande, R. D.; Ridgway, P.; Fu, Y.; Zhang, W.; Cai, J.; Battaglia, V. J. Electrochem. Soc. 2015, 162, A330.

    19. [19]

      Qian, Y.; Schultz, C.; Niehoff, P.; Schwieters, T.; Nowak, S.; Schappacher, F. M.; Winter, M. J. Power Sources 2016, 332, 60.  doi: 10.1016/j.jpowsour.2016.09.100

    20. [20]

      Peng, H. J.; Urbonaite, S.; Villevieille, C.; Wolf, H.; Leitner, K.; Novak, P. J. Electrochem. Soc. 2015, 162, A7072.  doi: 10.1149/2.0061513jes

    21. [21]

      Qian, Y.; Niehoff, P.; Boerner, M.; Gruetzke, M.; Moennighoff, X.; Behrends, P.; Nowak, S.; Winter, M.; Schappacher, F. M. J. Power Sources 2016, 329, 31.  doi: 10.1016/j.jpowsour.2016.08.023

    22. [22]

      Wang, D. Y.; Xia, J.; Ma, L.; Nelson, K. J.; Harlow, J. E.; Xiong, D.; Downie, L. E.; Petibon, R.; Burns, J. C.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1818.  doi: 10.1149/2.0511412jes

    23. [23]

      Madec, L.; Ma, L.; Nelson, K. J.; Petibon, R.; Sun, J.-P.; Hill, I. G.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A1001.  doi: 10.1149/2.1051606jes

    24. [24]

      Ma, G.; Wang, L.; Zhang, J.; Chen, H.; He, X.; Ding, Y. Prog. Chem. 2016, 28, 1299.
       

    25. [25]

      Kim, K.; Park, I.; Ha, S.-Y.; Kim, Y.; Woo, M.-H.; Jeong, M.-H.; Shin, W. C.; Ue, M.; Hong, S. Y.; Choi, N.-S. Electrochim. Acta 2017, 225, 358.  doi: 10.1016/j.electacta.2016.12.126

    26. [26]

      Wang, L.; Ma, Y.; Qu, Y.; Cheng, X.; Zuo, P.; Du, C.; Gao, Y.; Yin, G. Electrochim. Acta 2016, 191, 8.  doi: 10.1016/j.electacta.2016.01.032

    27. [27]

      Streich, D.; Gueguen, A.; Mendez, M.; Chesneau, F.; Novak, P.; Berg, E. J. J. Electrochem. Soc. 2016, 163, A964.  doi: 10.1149/2.0801606jes

    28. [28]

      Xiong, D. J.; Petibon, R.; Nie, M.; Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A546.  doi: 10.1149/2.0951603jes

    29. [29]

      Xiong, D. J.; Ellis, L. D.; Petibon, R.; Hynes, T.; Liu, Q. Q.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A340.  doi: 10.1149/2.1091702jes

    30. [30]

      Ma, L.; Xia, J.; Xia, X.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1495.  doi: 10.1149/2.0091410jes

    31. [31]

      Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Bjorefors, F.; Edstrom, K.; Gustafsson, T. Chem. Mater. 2015, 27, 2591.  doi: 10.1021/acs.chemmater.5b00339

    32. [32]

      Klett, M.; Gilbert, J. A.; Trask, S. E.; Polzin, B. J.; Jansen, A. N.; Dees, D. W.; Abraham, D. P. J. Electrochem. Soc. 2016, 163, A875.  doi: 10.1149/2.0271606jes

    33. [33]

      Klett, M.; Gilbert, J. A.; Pupek, K. Z.; Trask, S. E.; Abraham, D. P. J. Electrochem. Soc. 2017, 164, A6095.  doi: 10.1149/2.0131701jes

    34. [34]

      Hall, D. S.; Glazier, S. L.; Dahn, J. R. PCCP 2016, 18, 11383.  doi: 10.1039/C6CP01309K

    35. [35]

      Lee, Y.-M.; Nam, K.-M.; Hwang, E.-H.; Kwon, Y.-G.; Kang, D.-H.; Kim, S.-S.; Song, S.-W. J. Phys. Chem. C 2014, 118, 10631.

    36. [36]

      Nguyen, D.-T.; Kang, J.; Nam, K.-M.; Paik, Y.; Song, S.-W. J. Power Sources 2016, 303, 150.  doi: 10.1016/j.jpowsour.2015.10.089

    37. [37]

      Wang, C.; Tang, S.; Zuo, X.; Xiao, X.; Liu, J.; Nan, J. J. Electrochem. Soc. 2015, 162, A1997.  doi: 10.1149/2.0211510jes

    38. [38]

      Wang, C.; Zuo, X.; Zhao, M.; Xiao, X.; Yu, L.; Nan, J. J. Power Sources 2016, 307, 772.  doi: 10.1016/j.jpowsour.2016.01.047

    39. [39]

      Tornheim, A.; He, M.; Su, C.-C.; Zhang, Z. J. Electrochem. Soc. 2017, 164, A6366.  doi: 10.1149/2.0471701jes

    40. [40]

      Zheng, X. Z.; Huang, T.; Pan, Y.; Wang, W. G.; Fang, G. H.; Ding, K. N.; Wu, M. X. ACS Appl. Mater. Interfaces 2017, 9, 18758.  doi: 10.1021/acsami.7b03014

    41. [41]

      Xia, J.; Petibon, R.; Xiong, D.; Ma, L.; Dahn, J. R. J. Power Sources 2016, 328, 124.  doi: 10.1016/j.jpowsour.2016.08.015

    42. [42]

      Ma, L.; Glazier, S. L.; Petibon, R.; Xia, J.; Peters, J. M.; Liu, Q.; Allen, J.; Doig, R. N. C.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A5008.  doi: 10.1149/2.0191701jes

    43. [43]

      Gmitter, A. J.; Plitz, I.; Amatucci, G. G. J. Electrochem. Soc. 2012, 159, A370.  doi: 10.1149/2.016204jes

    44. [44]

      Downie, L. E.; Hyatt, S. R.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A35.  doi: 10.1149/2.0081602jes

    45. [45]

      Liu, Q. Q.; Xiong, D. J.; Petibon, R.; Du, C. Y.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A3010.  doi: 10.1149/2.0711614jes

    46. [46]

      Xia, J.; Nie, M.; Burns, J. C.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Power Sources 2016, 307, 340.  doi: 10.1016/j.jpowsour.2015.12.132

    47. [47]

      Xia, J.; Petibon, R.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Power Sources 2016, 330, 175.  doi: 10.1016/j.jpowsour.2016.09.012

    48. [48]

      Im, J.; Lee, J.; Ryou, M.-H.; Lee, Y. M.; Cho, K. Y. J. Elec-trochem. Soc. 2017, 164, A6381.  doi: 10.1149/2.0591701jes

    49. [49]

      Chretien, F.; Jones, J.; Damas, C.; Lemordant, D.; Willmann, P.; Anouti, M. J. Power Sources 2014, 248, 969.  doi: 10.1016/j.jpowsour.2013.09.092

    50. [50]

      Ren, T.; Zhuang, Q.; Hao, Y.; Cui, Y. Acta Chim. Sinica 2016, 74, 833.  doi: 10.11862/CJIC.2016.110
       

    51. [51]

      Wu, Y. P. ; Dai, X. B. ; Ma, J. Q. ; Cheng, Y. J. Lithium Ion Batteries-Application and Practice, Chemical Industry Press, Beijing, 2004, p. 222.

    52. [52]

      Xu, W.; Angell, C. A. Electrochem. Solid State Lett. 2001, 4, L3.  doi: 10.1149/1.1347858

    53. [53]

      Jiang, J.; Fortier, H.; Reimers, J. N.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A609.  doi: 10.1149/1.1667520

    54. [54]

      Lu, W.; Chen, Z.; Joachin, H.; Prakash, J.; Liu, J.; Amine, K. J. Power Sources 2007, 163, 1074.  doi: 10.1016/j.jpowsour.2006.09.010

    55. [55]

      Taeubert, C.; Fleischhammer, M.; Wohlfahrt-Mehrens, M.; Wietelmann, U.; Buhrmester, T. J. Electrochem. Soc. 2010, 157, A721.  doi: 10.1149/1.3374666

    56. [56]

      Kim, G.-Y.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1394.  doi: 10.1149/2.0951409jes

    57. [57]

      Zhang, L.; Ma, Y.; Cheng, X.; Zuo, P.; Cui, Y.; Guan, T.; Du, C.; Gao, Y.; Yin, G. Solid State Ionics 2014, 263, 146.  doi: 10.1016/j.ssi.2014.06.001

    58. [58]

      Li, C.; Hou, Q.; Li, S.; Tang, F.; Wang, P. J. Alloys Compd. 2017, 723, 887.  doi: 10.1016/j.jallcom.2017.06.151

    59. [59]

      Xiang, H.; Shi, P.; Bhattacharya, P.; Chen, X.; Mei, D.; Bowden, M. E.; Zheng, J.; Zhang, J.-G.; Xu, W. J. Power Sources 2016, 318, 170.  doi: 10.1016/j.jpowsour.2016.04.017

    60. [60]

      Abraham, D. P.; Furczon, M. M.; Kang, S. H.; Dees, D. W.; Jansen, A. N. J. Power Sources 2008, 180, 612.  doi: 10.1016/j.jpowsour.2008.02.047

    61. [61]

      Qin, Y.; Chen, Z.; Liu, J.; Amine, K. Electrochem. Solid State Lett. 2010, 13, A11.  doi: 10.1149/1.3261738

    62. [62]

      Mun, J.; Lee, J.; Hwang, T.; Lee, J.; Noh, H.; Choi, W. J. Electroanal. Chem. 2015, 745, 8.  doi: 10.1016/j.jelechem.2015.02.034

    63. [63]

      Shkrob, I. A.; Zhu, Y.; Marin, T. W.; Abraham, D. P. J. Phys. Chem. C 2013, 117, 23750.  doi: 10.1021/jp407714p

    64. [64]

      Lee, S. J.; Han, J.-G.; Lee, Y.; Jeong, M.-H.; Shin, W. C.; Ue, M.; Choi, N.-S. Electrochim. Acta 2014, 137, 1.  doi: 10.1016/j.electacta.2014.05.136

    65. [65]

      Cha, J.; Han, J.-G.; Hwang, J.; Cho, J.; Choi, N.-S. J. Power Sources 2017, 357, 97.  doi: 10.1016/j.jpowsour.2017.04.094

    66. [66]

      Wu, F.; Zhu, Q.; Li, L.; Chen, R.; Chen, S. J. Mater. Chem. A 2013, 1, 3659.  doi: 10.1039/c3ta01182h

    67. [67]

      Liu, M.; Dai, F.; Ma, Z.; Ruthkosky, M.; Yang, L. J. Power Sources 2014, 268, 37.  doi: 10.1016/j.jpowsour.2014.05.109

    68. [68]

      Park, K.; Yu, S.; Lee, C.; Lee, H. J. Power Sources 2015, 296, 197.  doi: 10.1016/j.jpowsour.2015.07.052

    69. [69]

      Yan, G.; Li, X.; Wang, Z.; Guo, H.; Peng, W.; Hu, Q. J. Solid State Electrochem. 2015, 20, 507.
       

    70. [70]

      Scheers, J.; Johansson, P.; Jacobsson, P. J. Electrochem. Soc. 2008, 155, A628.  doi: 10.1149/1.2943214

    71. [71]

      Hayamizu, K.; Matsuo, A.; Arai, J. J. Electrochem. Soc. 2009, 156.

    72. [72]

      Chen, Z.; Ren, Y.; Jansen, A. N.; Lin, C.-k.; Weng, W.; Amine, K. Nat. Commun. 2013, 4.

    73. [73]

      Park, K.; Yu, S.; Lee, C.; Lee, H. J. Power Sources 2015, 296, 197.  doi: 10.1016/j.jpowsour.2015.07.052

    74. [74]

      Forestier, C.; Grugeon, S.; Davoisne, C.; Lecocq, A.; Marlair, G.; Armand, M.; Sannier, L.; Laruelle, S. J. Power Sources 2016, 330, 186.  doi: 10.1016/j.jpowsour.2016.09.005

    75. [75]

      Wang, D. Y.; Xiao, A.; Wells, L.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A169.

    76. [76]

      Miao, R.; Yang, J.; Xu, Z.; Wang, J.; Nuli, Y.; Sun, L. Sci. Rep. 2016, 6.
       

    77. [77]

      Petibon, R.; Aiken, C. P.; Ma, L.; Xiong, D.; Dahn, J. R. Electrochim. Acta 2015, 154, 287.  doi: 10.1016/j.electacta.2014.12.093

    78. [78]

      Pohl, B.; Gruenebaum, M.; Drews, M.; Passerini, S.; Winter, M.; Wiemhoefer, H.-D. Electrochim. Acta 2015, 180, 795.  doi: 10.1016/j.electacta.2015.09.001

    79. [79]

      Madec, L.; Xia, J.; Petibon, R.; Nelson, K. J.; Sun, J.-P.; Hill, I. G.; Dahn, J. R. J. Phys. Chem. C 2014, 118, 29608.  doi: 10.1021/jp509731y

    80. [80]

      Yang, G.; Shi, J.; Shen, C.; Wang, S.; Xia, L.; Hu, H.; Luo, H.; Xia, Y.; Liu, Z. RSC Adv. 2017, 7, 26052.  doi: 10.1039/C7RA03926C

    81. [81]

      Li, B.; Wang, Y.; Tu, W.; Wang, Z.; Xu, M.; Xing, L.; Li, W. Electrochim. Acta 2014, 147, 636.  doi: 10.1016/j.electacta.2014.09.151

    82. [82]

      Kim, K.-E.; Jang, J. Y.; Park, I.; Woo, M.-H.; Jeong, M.-H.; Shin, W. C.; Ue, M.; Choi, N.-S. Electrochem. Commun. 2015, 61, 121.  doi: 10.1016/j.elecom.2015.10.013

    83. [83]

      Milien, M. S.; Tottempudi, U.; Son, M.; Ue, M.; Lucht, B. L. J. Electrochem. Soc. 2016, 163, A1369.
       

    84. [84]

      Murmann, P.; Streipert, B.; Kloepsch, R.; Ignatiev, N.; Sartori, P.; Winter, M.; Cekic-Laskovic, I. PCCP 2012, 17, 9352.
       

    85. [85]

      Murmann, P.; Schmitz, R.; Nowak, S.; Ignatiev, N.; Sartori, P.; Celdc-Laskovic, I.; Winter, M. J. Electrochem. Soc. 2015, 162, A1738.  doi: 10.1149/2.0261509jes

    86. [86]

      Xu, C.; Renault, S.; Ebadi, M.; Wang, Z.; Bjorklund, E.; Guyomard, D.; Brandell, D.; Edstrom, K.; Gustafsson, T. Chem. Mater. 2017, 29, 2254.  doi: 10.1021/acs.chemmater.6b05247

    87. [87]

      Li, Q.; Jiao, S.; Luo, L.; Ding, M. S.; Zheng, J.; Cartmell, S. S.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. ACS Appl. Mater. Interfaces 2017, 9, 18826.  doi: 10.1021/acsami.7b04099

    88. [88]

      Wagner, R.; Streipert, B.; Kraft, V.; Jimenez, A. R.; Roeser, S.; Kasnatscheew, J.; Gallus, D. R.; Boerner, M.; Mayer, C.; Arlinghaus, H. F.; Korth, M.; Amereller, M.; Cekic-Laskovic, I.; Winter, M. Adv. Mater. Interfaces 2016, 3, 1.
       

    89. [89]

      Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, C. J. Power Sources 2014, 248, 1306.  doi: 10.1016/j.jpowsour.2013.10.037

    90. [90]

      Liao, X.; Zheng, X.; Chen, J.; Huang, Z.; Xu, M.; Xing, L.; Liao, Y.; Lu, Q.; Li, X.; Li, W. Electrochim. Acta 2016, 212, 352.  doi: 10.1016/j.electacta.2016.07.026

    91. [91]

      Rong, H.; Xu, M.; Xie, B.; Huang, W.; Liao, X.; Xing, L.; Li, W. J. Power Sources 2015, 274, 1155.  doi: 10.1016/j.jpowsour.2014.10.123

    92. [92]

      Borodin, O.; Behl, W.; Jow, T. R. J. Phys. Chem. C 2013, 117, 8661.  doi: 10.1021/jp400527c

    93. [93]

      Delp, S. A.; Borodin, O.; Olguin, M.; Eisner, C. G.; Allen, J. L.; Jow, T. R. Electrochim. Acta 2016, 209, 498.  doi: 10.1016/j.electacta.2016.05.100

    94. [94]

      Mai, S.; Xu, M.; Liao, X.; Hu, J.; Lin, H.; Xing, L.; Liao, Y.; Li, X.; Li, W. Electrochim. Acta 2014, 147, 565.  doi: 10.1016/j.electacta.2014.09.157

    95. [95]

      Han, J.-G.; Lee, S. J.; Lee, J.; Kim, J.-S.; Lee, K. T.; Choi, N.-S. ACS Appl. Mater. Interfaces 2015, 7, 8319.  doi: 10.1021/acsami.5b01770

    96. [96]

      Yim, T.; Woo, S.-G.; Lim, S. H.; Cho, W.; Song, J. H.; Han, Y.-K.; Kim, Y.-J. J. Mater. Chem. A 2015, 3, 6157.  doi: 10.1039/C4TA06531J

    97. [97]

      Zhu, Y.; Luo, X.; Xu, M.; Zhang, L.; Yu, L.; Fan, W.; Li, W. J. Power Sources 2016, 317, 65.  doi: 10.1016/j.jpowsour.2016.03.090

    98. [98]

      Song, Y.-M.; Kim, C.-K.; Kim, K.-E.; Hong, S. Y.; Choi, N.-S. J. Power Sources 2016, 302, 22.  doi: 10.1016/j.jpowsour.2015.10.043

    99. [99]

      Kim, D. Y.; Park, H.; Choi, W. I.; Roy, B.; Seo, J.; Park, I.; Kim, J. H.; Park, J. H.; Kang, Y. S.; Koh, M. J. Power Sources 2017, 355, 154.  doi: 10.1016/j.jpowsour.2017.04.062

    100. [100]

      Han, Y.-K.; Yoo, J.; Yim, T. RSC Adv. 2017, 7, 20049.  doi: 10.1039/C6RA28268G

    101. [101]

      Peebles, C.; Sahore, R.; Gilbert, J. A.; Garcia, J. C.; Tornheim, A.; Bareño, J.; Iddir, H.; Liao, C.; Abraham, D. P. J. Electrochem. Soc. 2017, 164, A1579.  doi: 10.1149/2.1101707jes

    102. [102]

      Sinha, N. N.; Burns, J. C.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1084.  doi: 10.1149/2.087406jes

    103. [103]

      Koo, B.; Lee, J.; Lee, Y.; Kim, J. K.; Choi, N.-S. Electrochim. Acta 2015, 173, 750.  doi: 10.1016/j.electacta.2015.05.129

    104. [104]

      Han, Y.-K.; Yoo, J.; Yim, T. J. Mater. Chem. A 2015, 3, 10900.  doi: 10.1039/C5TA01253H

    105. [105]

      Qi, X.; Tao, L.; Hahn, H.; Schultz, C.; Gallus, D. R.; Cao, X.; Nowak, S.; Roeser, S.; Li, J.; Cekic-Laskovic, I.; Rad, B. R.; Winter, M. RSC Adv. 2016, 6, 38342.  doi: 10.1039/C6RA06555D

    106. [106]

      He, M.; Su, C.-C.; Peebles, C.; Feng, Z.; Connell, J. G.; Liao, C.; Wang, Y.; Shkrob, I. A.; Zhang, Z. ACS Appl. Mater. Interfaces 2016, 8, 11450.  doi: 10.1021/acsami.6b01544

    107. [107]

      Wang, L.; Ma, Y. L.; Li, Q.; Cui, Y. Z.; Wang, P. P.; Cheng, X. Q.; Zuo, P. J.; Du, C. Y.; Gao, Y. Z.; Yin, G. P. Electrochim. Acta 2017, 243, 72.  doi: 10.1016/j.electacta.2017.05.008

    108. [108]

      von Aspern, N.; Röser, S.; Rezaei Rad, B.; Murmann, P.; Streipert, B.; Mönnighoff, X.; Tillmann, S. D.; Shevchuk, M.; Stubbmann-Kazakova, O.; Röschenthaler, G.-V.; Nowak, S.; Winter, M.; Cekic-Laskovic, I. J. Fluorine Chem. 2017, 198, 24.  doi: 10.1016/j.jfluchem.2017.02.005

    109. [109]

      Xia, J.; Madec, L.; Ma, L.; Ellis, L. D.; Qiu, W.; Nelson, K. J.; Lu, Z.; Dahn, J. R. J. Power Sources 2015, 295, 203.  doi: 10.1016/j.jpowsour.2015.06.151

    110. [110]

      Liu, Q. Q.; Petibon, R.; Du, C. Y.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A1173.  doi: 10.1149/2.1081706jes

    111. [111]

      Mai, S.; Xu, M.; Liao, X.; Xing, L.; Li, W. J. Power Sources 2015, 273, 816.  doi: 10.1016/j.jpowsour.2014.09.171

    112. [112]

      Wagner, R.; Korth, M.; Streipert, B.; Kasnatscheew, J.; Gallus, D. R.; Brox, S.; Arnereller, M.; Cekic-Laskovic, I.; Winter, M. ACS Appl. Mater. Interfaces 2016, 8, 30871.  doi: 10.1021/acsami.6b09164

    113. [113]

      Gao, D.; Xu, J. B.; Lin, M.; Xu, Q.; Ma, C. F.; Xiang, H. F. RSC Adv. 2015, 5, 17566.  doi: 10.1039/C4RA15899G

    114. [114]

      Zuo, X.; Fan, C.; Liu, J.; Xiao, X.; Wu, J.; Nan, J. J. Power Sources 2013, 229, 308.  doi: 10.1016/j.jpowsour.2012.12.056

    115. [115]

      Yan, C.; Xu, Y.; Xia, J.; Gong, C.; Chen, K. J. Energy Chem. 2016, 25, 659.  doi: 10.1016/j.jechem.2016.04.010

    116. [116]

      Rong, H.; Xu, M.; Xie, B.; Liao, X.; Huang, W.; Xing, L.; Li, W. Electrochim. Acta 2014, 147, 31.  doi: 10.1016/j.electacta.2014.09.105

    117. [117]

      Li, J.; Xing, L.; Zhang, R.; Chen, M.; Wang, Z.; Xu, M.; Li, W. J. Power Sources 2015, 285, 360.  doi: 10.1016/j.jpowsour.2015.03.113

    118. [118]

      Wang, K.; Xing, L.; Zhu, Y.; Zheng, X.; Cai, D.; Li, W. J. Power Sources 2017, 342, 677.  doi: 10.1016/j.jpowsour.2016.12.112

    119. [119]

      Liao, X.; Huang, Q.; Mai, S.; Wang, X.; Xu, M.; Xing, L.; Liao, Y.; Li, W. J. Power Sources 2014, 272, 501.  doi: 10.1016/j.jpowsour.2014.08.117

    120. [120]

      Liao, X.; Sun, P.; Xu, M.; Xing, L.; Liao, Y.; Zhang, L.; Yu, L.; Fan, W.; Li, W. Appl. Energy 2016, 175, 505.  doi: 10.1016/j.apenergy.2016.03.114

    121. [121]

      Han, Y.-K.; Yoo, J.; Yim, T. Electrochim. Acta 2016, 215, 455.  doi: 10.1016/j.electacta.2016.08.131

    122. [122]

      Imholt, L.; Roeser, S.; Boerner, M.; Streipert, B.; Rad, B. R.; Winter, M.; Cekic-Laskovic, I. Electrochim. Acta 2017, 235, 332.  doi: 10.1016/j.electacta.2017.03.092

    123. [123]

      Han, Y.-K.; Lee, K.; Yoo, J.; Huh, Y. S. Theor. Chem. Acc. 2014, 133.

    124. [124]

      Birrozzi, A.; Laszczynski, N.; Hekmatfar, M.; von Zamory, J.; Giffin, G. A.; Passerini, S. J. Power Sources 2016, 325, 525.  doi: 10.1016/j.jpowsour.2016.06.054

    125. [125]

      Wang, F.; Lin, Y.; Suo, L.; Fan, X.; Gao, T.; Yang, C.; Han, F.; Qi, Y.; Xu, K.; Wang, C. Energ. Environ. Sci. 2016, 9, 3666.  doi: 10.1039/C6EE02604D

    126. [126]

      Burns, J. C.; Sinha, N. N.; Jain, G.; Ye, H.; VanElzen, C. M.; Lamanna, W. M.; Xiao, A.; Scott, E.; Choi, J.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A1105.  doi: 10.1149/2.078207jes

    127. [127]

      Burns, J. C.; Xia, X.; Dahn, J. R. J. Electrochem. Soc. 2013, 160, A383.
       

    128. [128]

      Petibon, R.; Aiken, C. P.; Sinha, N. N.; Burns, J. C.; Ye, H.; VanElzen, C. M.; Jain, G.; Trussler, S.; Dahn, J. R. J. Electrochem. Soc. 2013, 160, A117.  doi: 10.1149/2.041308jes

    129. [129]

      Petibon, R.; Sinha, N. N.; Burns, J. C.; Aiken, C. P.; Ye, H.; VanElzen, C. M.; Jain, G.; Trussler, S.; Dahn, J. R. J. Power Sources 2014, 251, 187.  doi: 10.1016/j.jpowsour.2013.11.054

    130. [130]

      Ping, P.; Xia, X.; Wang, Q. S.; Sun, J. H.; Dahn, J. R. J. Electro-chem. Soc. 2013, 160, A426.  doi: 10.1149/2.041308jes

    131. [131]

      Nie, M.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1693.  doi: 10.1149/2.0171509jes

    132. [132]

      Nie, M.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1186.  doi: 10.1149/2.0271507jes

    133. [133]

      Nie, M.; Xia, J.; Ma, L.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A2066.  doi: 10.1149/2.0411510jes

    134. [134]

      Nie, M.; Ma, L.; Xia, J.; Xiao, A.; Lamanna, W. M.; Smith, K.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A2124.  doi: 10.1149/2.0041610jes

    135. [135]

      Nie, M.; Madec, L.; Xia, J.; Hall, D. S.; Dahn, J. R. J. Power Sources 2016, 328, 433.  doi: 10.1016/j.jpowsour.2016.08.048

    136. [136]

      Pang, C.; Xu, G.; An, W.; Ding, G.; Liu, X.; Chai, J.; Ma, J.; Liu, H.; Cui, G. Energy Technol. 2017, 5, 1979.  doi: 10.1002/ente.201700118

    137. [137]

      Chen, Z. H.; Amine, K. J. Electrochem. Soc. 2006, 153, A1221.  doi: 10.1149/1.2194633

    138. [138]

      Wang, Z.; Xing, L.; Li, J.; Li, B.; Xu, M.; Liao, Y.; Li, W. Electrochim. Acta 2015, 184, 40.  doi: 10.1016/j.electacta.2015.10.044

    139. [139]

      Yu, Q.; Chen, Z.; Xing, L.; Chen, D.; Rong, H.; Liu, Q.; Li, W. Electrochim. Acta 2015, 176, 919.  doi: 10.1016/j.electacta.2015.07.058

    140. [140]

      Li, J.; Xing, L.; Chen, J.; Zhou, H.; Xu, M.; Li, W. J. Electrochem. Soc. 2016, 163, A2258.  doi: 10.1149/2.0631610jes

    141. [141]

      Li, J.; Zhang, L.; Yu, L.; Fan, W.; Wang, Z.; Yang, X.; Lin, Y.; Xing, L.; Xu, M.; Li, W. J. Phys. Chem. C 2016, 120, 26899.  doi: 10.1021/acs.jpcc.6b09097

    142. [142]

      Wang, Z.; Xing, L.; Li, J.; Xu, M.; Li, W. J. Power Sources 2016, 307, 587.  doi: 10.1016/j.jpowsour.2015.11.091

    143. [143]

      Zuo, X.; Xu, M.; Li, W.; Su, D.; Liu, J. Electrochem. Solid-State Lett. 2006, 9, A196.  doi: 10.1149/1.2170462

    144. [144]

      Lee, H.; Choi, S.; Choi, S.; Kim, H.-J.; Choi, Y.; Yoon, S.; Cho, J.-J. Electrochem. Commun. 2007, 9, 801.  doi: 10.1016/j.elecom.2006.11.008

    145. [145]

      Leggesse, E. G.; Jiang, J.-C. RSC Adv. 2012, 2, 5439.  doi: 10.1039/c2ra20200j

    146. [146]

      Park, G.; Nakamura, H.; Lee, Y.; Yoshio, M. J. Power Sources 2009, 189, 602.  doi: 10.1016/j.jpowsour.2008.09.088

    147. [147]

      Kim, J. H.; Bae, S.-y.; Min, J.-H.; Song, S.-W.; Kim, D.-W. Electrochim. Acta 2012, 78, 11.  doi: 10.1016/j.electacta.2012.05.161

    148. [148]

      Zhang, B.; Metzger, M.; Solchenbach, S.; Payne, M.; Meini, S.; Gasteiger, H. A.; Garsuch, A.; Lucht, B. L. J. Phys. Chem. C 2015, 119, 11337.  doi: 10.1021/acs.jpcc.5b00072

    149. [149]

      Jung, H. M.; Park, S.-H.; Jeon, J.; Choi, Y.; Yoon, S.; Cho, J.-J.; Oh, S.; Kang, S.; Han, Y.-K.; Lee, H. J. Mater. Chem. A 2013, 1, 11975.  doi: 10.1039/c3ta12580g

    150. [150]

      Xu, M.; Li, W.; Lucht, B. L. J. Power Sources 2009, 193, 804.  doi: 10.1016/j.jpowsour.2009.03.067

    151. [151]

      Kang, K. S.; Choi, S.; Song, J.; Woo, S.-G.; Jo, Y. N.; Choi, J.; Yim, T.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2014, 253, 48.  doi: 10.1016/j.jpowsour.2013.12.024

    152. [152]

      Kim, H.; Grugeon, S.; Gachot, G.; Armand, M.; Sannier, L.; Laruelle, S. Electrochim. Acta 2014, 136, 157.  doi: 10.1016/j.electacta.2014.05.072

    153. [153]

      Yim, T.; Kim, S. H.; Woo, S.-G.; Lee, K.; Song, J. H.; Cho, W.; Kim, K. J.; Kim, J.-S.; Kim, Y.-J. RSC Adv. 2014, 4, 19172.  doi: 10.1039/c4ra01441c

    154. [154]

      Pires, J.; Timperman, L.; Castets, A.; Peña, J. S.; Dumont, E.; Levasseur, S.; Dedryvère, R.; Tessier, C.; Anouti, M. RSC Adv. 2015, 5, 42088.  doi: 10.1039/C5RA05650K

    155. [155]

      Li, B.; Xu, M.; Li, T.; Li, W.; Hu, S. Electrochem. Commun. 2012, 17, 92.  doi: 10.1016/j.elecom.2012.02.016

    156. [156]

      Li, B.; Xu, M.; Li, B.; Liu, Y.; Yang, L.; Li, W.; Hu, S. Electrochim. Acta 2013, 105, 1.  doi: 10.1016/j.electacta.2013.04.142

    157. [157]

      Nelson, K. J.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1884.  doi: 10.1149/2.0791412jes

    158. [158]

      Xia, J.; Ma, L.; Aiken, C. P.; Nelson, K. J.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1634.  doi: 10.1149/2.0541410jes

    159. [159]

      Madec, L.; Petibon, R.; Xia, J.; Sun, J. P.; Hill, I. G.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A2635.  doi: 10.1149/2.0741512jes

    160. [160]

      Self, J.; Aiken, C. P.; Petibon, R.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A796.  doi: 10.1149/2.0081506jes

    161. [161]

      Self, J.; Hall, D. S.; Madec, L.; Dahn, J. R. J. Power Sources 2015, 298, 369.  doi: 10.1016/j.jpowsour.2015.08.060

    162. [162]

      Petibon, R.; Madec, L.; Rotermund, L. M.; Dahn, J. R. J. Power Sources 2016, 313, 152.  doi: 10.1016/j.jpowsour.2016.02.054

    163. [163]

      Ellis, L. D.; Xia, J.; Louli, A. J.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A1686.  doi: 10.1149/2.0851608jes

    164. [164]

      Han, Y.-K.; Yoo, J.; Jung, J. J. Phys. Chem. C 2016, 120, 28390.  doi: 10.1021/acs.jpcc.6b07525

    165. [165]

      Xia, J.; Harlow, J. E.; Petibon, R.; Burns, J. C.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A547.  doi: 10.1149/2.049404jes

    166. [166]

      Zuo, X.; Fan, C.; Xiao, X.; Liu, J.; Nan, J. ECS Electrochem. Lett. 2012, 1, A50.  doi: 10.1149/2.006203eel

    167. [167]

      Zuo, X.; Fan, C.; Xiao, X.; Liu, J.; Nan, J. J. Power Sources 2012, 219, 94.  doi: 10.1016/j.jpowsour.2012.07.026

    168. [168]

      Xia, J.; Sinha, N. N.; Chen, L. P.; Kim, G. Y.; Xiong, D. J.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A84.
       

    169. [169]

      Ding, Z.; Li, X.; Wei, T.; Yin, Z.; Li, X. Electrochim. Acta 2016, 196, 622.  doi: 10.1016/j.electacta.2016.02.205

    170. [170]

      Huang, T.; Zheng, X.; Pan, Y.; Wang, W.; Fang, G.; Wu, M. Electrochim. Acta 2015, 156, 328.  doi: 10.1016/j.electacta.2015.01.006

    171. [171]

      Zheng, X.; Huang, T.; Pan, Y.; Wang, W.; Fang, G.; Ding, K.; Wu, M. J. Power Sources 2016, 319, 116.  doi: 10.1016/j.jpowsour.2016.04.053

    172. [172]

      Zheng, X.; Huang, T.; Pan, Y.; Wang, W.; Fang, G.; Wu, M. J. Power Sources 2015, 293, 196.  doi: 10.1016/j.jpowsour.2015.05.061

    173. [173]

      Yim, T.; Kang, K. S.; Mun, J.; Lim, S. H.; Woo, S.-G.; Kim, K. J.; Park, M.-S.; Cho, W.; Song, J. H.; Han, Y.-K.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2016, 302, 431.  doi: 10.1016/j.jpowsour.2015.10.051

    174. [174]

      Zuo, X.; Zhao, M.; Ma, X.; Xiao, X.; Liu, J.; Nan, J. Electrochim. Acta 2017, 245, 705.  doi: 10.1016/j.electacta.2017.05.155

    175. [175]

      Cai, H.; Jing, H.; Zhang, X.; Shen, M.; Wang, Q. J. Electrochem. Soc. 2017, 164, A714.  doi: 10.1149/2.0801704jes

    176. [176]

      Xia, J.; Dahn, J. R. J. Power Sources 2016, 324, 704.  doi: 10.1016/j.jpowsour.2016.06.008

    177. [177]

      Xia, L.; Yu, L.; Hu, D.; George, C. Z. Acta Chim. Sinica 2017, 75, 1183.
       

    178. [178]

      Santner, H. J.; Moller, K. C.; Ivanco, J.; Ramsey, M. G.; Netzer, F. P.; Yamaguchi, S.; Besenhard, J. O.; Winter, M. J. Power Sources 2003, 119, 368.
       

    179. [179]

      Kim, Y.-S.; Kim, T.-H.; Lee, H.; Song, H.-K. Energ. Environ. Sci. 2011, 4, 4038.  doi: 10.1039/c1ee01272j

    180. [180]

      Nurpeissova, A.; Park, D. I.; Kim, S. S.; Sun, Y. K. J. Elec-trochem. Soc. 2015, 163, A171.  doi: 10.1149/2.0431602jes

    181. [181]

      Wang, X.; Zheng, X.; Liao, Y.; Huang, Q.; Xing, L.; Xu, M.; Li, W. J. Power Sources 2017, 338, 108.  doi: 10.1016/j.jpowsour.2016.10.103

    182. [182]

      Kim, Y.-S.; Lee, H.; Song, H.-K. ACS Appl. Mater. Interfaces 2014, 6, 8913.  doi: 10.1021/am501671p

    183. [183]

      Brox, S.; Roeser, S.; Husch, T.; Hildebrand, S.; Fromm, O.; Korth, M.; Winter, M.; Cekic-Laskovic, I. ChemSusChem 2016, 9, 1704.  doi: 10.1002/cssc.201600369

    184. [184]

      Hong, P.; Xu, M.; Zheng, X.; Zhu, Y.; Liao, Y.; Xing, L.; Huang, Q.; Wan, H.; Yang, Y.; Li, W. J. Power Sources 2016, 329, 216.  doi: 10.1016/j.jpowsour.2016.07.111

    185. [185]

      Hong, P.; Xu, M.; Chen, D.; Chen, X.; Xing, L.; Huang, Q.; Li, W. J. Electrochem. Soc. 2017, 164, A137.  doi: 10.1149/2.0531702jes

    186. [186]

      Wang, C.; Yu, L.; Fan, W.; Liu, J.; Ouyang, L.; Yang, L.; Zhu, M. ACS Appl. Mater. Interfaces 2017, 9, 9630.  doi: 10.1021/acsami.6b16220

    187. [187]

      Rohan, R.; Kuo, T.-C.; Lin, J.-H.; Hsu, Y.-C.; Li, C.-C.; Lee, J.-T. J. Phys. Chem. C 2016, 120, 6450.  doi: 10.1021/acs.jpcc.6b00980

    188. [188]

      Kim, G.-Y.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A437.  doi: 10.1149/2.0651503jes

    189. [189]

      Liu, Y.; Qin, Y.; Peng, Z.; Zhou, J.; Wan, C.; Wang, D. J. Mater. Chem. A 2015, 3, 8246.  doi: 10.1039/C4TA07055K

    190. [190]

      Dong, P.; Wang, D.; Yao, Y.; Li, X.; Zhang, Y.; Ru, J.; Ren, T. J. Power Sources 2017, 344, 111.  doi: 10.1016/j.jpowsour.2017.01.116

    191. [191]

      Qin, Y.; Chen, Z.; Lu, W.; Amine, K. J. Power Sources 2010, 195, 6888.  doi: 10.1016/j.jpowsour.2010.04.040

    192. [192]

      Lee, H.; Han, T.; Cho, K. Y.; Ryou, M.-H.; Lee, Y. M. ACS Appl. Mater. Interfaces 2016, 8, 21366.  doi: 10.1021/acsami.6b06074

    193. [193]

      Röser, S.; Lerchen, A.; Ibing, L.; Cao, X.; Kasnatscheew, J.; Glorius, F.; Winter, M.; Wagner, R. Chem. Mater. 2017, 29, 7733.  doi: 10.1021/acs.chemmater.7b01977

    194. [194]

      Xia, J.; Liu, Q.; Hebert, A.; Hynes, T.; Petibon, R.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A1268.  doi: 10.1149/2.1341706jes

    195. [195]

      Peebles, C.; He, M.; Feng, Z.; Su, C.-C.; Zeng, L.; Bedzyk, M. J.; Fenter, P.; Wang, Y.; Zhang, Z.; Liao, C. J. Electrochem. Soc. 2017, 164, A173.  doi: 10.1149/2.0721702jes

    196. [196]

      Qiu, W.; Xia, J.; Chen, L.; Dahn, J. R. J. Power Sources 2016, 318, 228.  doi: 10.1016/j.jpowsour.2016.03.105

    197. [197]

      Qin, X.-Y.; Wang, J.-L.; Tang, D.-P.; Mai, Y.-J.; Zhang, L.-Z. J. Zhejiang Univ.-Sci. A 2013, 14, 514.  doi: 10.1631/jzus.A1300026

    198. [198]

      Qin, X.; Wang, J.; Zhang, L. Prog. Chem. 2012, 24, 810.
       

    199. [199]

      Wang, Z.; Huang, Y.; Wang, X.; Jia, D.; Guo, Z.; Miao, M. Solid State Ionics 2013, 232, 19.  doi: 10.1016/j.ssi.2012.11.017

    200. [200]

      Deng, B.; Wang, H.; Ge, W.; Li, X.; Yan, X.; Chen, T.; Qu, M.; Peng, G. Electrochim. Acta 2017, 236, 61.  doi: 10.1016/j.electacta.2017.03.155

    201. [201]

      Wang, H.; Sun, D.; Li, X.; Ge, W.; Deng, B.; Qu, M.; Peng, G. Electrochim. Acta 2017, 254, 112.  doi: 10.1016/j.electacta.2017.09.111

    202. [202]

      Gallus, D. R.; Wagner, R.; Wiemers-Meyer, S.; Winter, M.; Cekic-Laskovic, I. Electrochim. Acta 2015, 184, 410.  doi: 10.1016/j.electacta.2015.10.002

    203. [203]

      Xia, J.; Sinha, N. N.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A264.
       

    204. [204]

      Xia, J.; Petibon, R.; Sinha, N. N.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A2227.  doi: 10.1149/2.0151512jes

    205. [205]

      Ma, L.; Wang, D. Y.; Downie, L. E.; Xia, J.; Nelson, K. J.; Sinha, N. N.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1261.  doi: 10.1149/2.0541409jes

    206. [206]

      Wang, D. Y.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1890.  doi: 10.1149/2.0841412jes

    207. [207]

      Xia, J.; Ma, L.; Dahn, J. R. J. Power Sources 2015, 287, 377.  doi: 10.1016/j.jpowsour.2015.04.070

    208. [208]

      Downie, L. E.; Hyatt, S. R.; Wright, A. T. B.; Dahn, J. R. J. Phys. Chem. C 2014, 118, 29533.  doi: 10.1021/jp508912z

    209. [209]

      Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A2250.  doi: 10.1149/2.1041414jes

    210. [210]

      Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1170.  doi: 10.1149/2.0181507jes

    211. [211]

      Ma, L.; Self, J.; Nie, M.; Glazier, S.; Wang, D. Y.; Lin, Y.-S.; Dahn, J. R. J. Power Sources 2015, 299, 130.  doi: 10.1016/j.jpowsour.2015.08.084

    212. [212]

      Arumugam, R. S.; Ma, L.; Li, J.; Xia, X.; Paulsen, J. M.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A2531.  doi: 10.1149/2.0171613jes

    213. [213]

      Nelson, K. J.; d'Eon, G. L.; Wright, A. T. B.; Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1046.  doi: 10.1149/2.0831506jes

    214. [214]

      Nelson, K. J.; Abarbanel, D. W.; Xia, J.; Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A272.  doi: 10.1149/2.0691602jes

    215. [215]

      Xiong, D. J.; Ellis, L. D.; Nelson, K. J.; Hynes, T.; Petibon, R.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A3069.  doi: 10.1149/2.1031614jes

    216. [216]

      Xia, J.; Self, J.; Ma, L.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1424.  doi: 10.1149/2.0121508jes

    217. [217]

      Xia, J.; Ma, L.; Nelson, K. J.; Nie, M.; Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A2399.  doi: 10.1149/2.1211610jes

    218. [218]

      Huang, J.; Sun, Y.; Wang, Y.; Zhang, Q. Acta Chim. Sinica 2017, 75, 173.  doi: 10.7503/cjcu20160462
       

    219. [219]

      Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154.
       

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    20. [20]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

Metrics
  • PDF Downloads(978)
  • Abstract views(19961)
  • HTML views(5253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return