Citation: He Qian, Zhang Chong, Li Xiao, Wang Xue, Mu Pan, Jiang Jiaxing. Pyrene-Based Conjugated Microporous Polymer as High Performance Electrode for Lithium-Ion Batteries[J]. Acta Chimica Sinica, ;2018, 76(3): 202-208. doi: 10.6023/A17110477 shu

Pyrene-Based Conjugated Microporous Polymer as High Performance Electrode for Lithium-Ion Batteries

  • Corresponding author: Jiang Jiaxing, jiaxing@snnu.edu.cn
  • Received Date: 2 November 2017
    Available Online: 4 March 2017

    Fund Project: the National Natural Science Foundation of China 21304055the National Natural Science Foundation of China 21574077Project supported by the National Natural Science Foundation of China (Nos. 21574077, 21304055)

Figures(6)

  • Lithium ion batteries (LIBs) have been recognized as one of the most popular and promising energy storage devices because of their high energy density and cyclability. The leading electrode materials for LIBs are mainly based on inorganic compounds materials because of their excellent electrochemical performances. Compared with inorganic compounds or metal-based electrode materials, organic electrode materials have been less explored for LIBs, but they are promising because of their synthetic diversity, flexible framework, low cost and environmental benignity. Unlike organic small molecules and linear polymers electrodes, which show low surface area and are soluble in electrolyte leading to the low electrochemical performance, conjugated microporous polymers (CMPs) feature with large specific surface area, good physicochemical stability, unique extended π-conjugation along the polymer skeleton and high crosslinked degree, which make CMPs great potential as electrodes for LIBs. In this work, a pyrene-based conjugated microporous polymer (PyDB) has been synthesized via palladium-catalyzed Suzuki cross-coupling reaction from tetrabromopyrene and 1, 4-benzenediboronic acid. PyDB is insoluble in common organic solvents tested because of its highly crosslinked polymer structure. Thermogravimetric analysis indicated that the polymer is thermally stable up to 430℃ in nitrogen atmosphere. Nitrogen adsorption-desorption measurement revealed that PyDB has a high Brunauer-Emmet-Teller specific surface area of up to 1283 m2·g-1. PyDB based electrode for LIBs exhibited excellent electrochemical performance. The assembled LIB from PyDB as cathode material shows a discharge capacity of 163 mAh·g-1 at a current density of 50 mA·g-1 with a high capacitance retention of 167 mAh·g-1 after 300 cycles at a current density of 100 mA·g-1. When PyDB was used as anode material, the assembled LIB also exhibits a high capacity of 495 mAh·g-1 at 50 mA·g-1 with a high capacitance retention of 245 mAh·g-1 after 300 cycles at 200 mA·g-1. The excellent electrochemical performance of PyDB could be attributed to its extended π-conjugation structure and porous structure with high surface area, the extended π-conjugation is beneficial to the doping reaction and electronic conduction, while porous structure with high surface area can provide plentiful active sites and promote the transmission of ions.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  doi: 10.1038/35104644

    2. [2]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.  doi: 10.1038/451652a

    3. [3]

      Qiu, Z. P.; Zhang, Y. J.; Xia, S. B.; Dong, P. Acta Chim. Sinica 2015, 73, 992.
       

    4. [4]

      Zhang, C.; Yang, X.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J.-X. J. Power Sources 2016, 317, 49.  doi: 10.1016/j.jpowsour.2016.03.080

    5. [5]

      Zheng, Z.; Wu, Z. G.; Xiang, W.; Guo, X. D. Acta Chim. Sinica 2017, 75, 501.  doi: 10.11862/CJIC.2017.053

    6. [6]

      Zhang, G. B.; Xiong, T. F.; Pan, X. L.; Yan, M. Y.; Han, C. H.; Mai, L. Q. Acta Chim. Sinica 2016, 74, 582.
       

    7. [7]

      Zhang, C.; Kong, R.; Wang, X.; Xu, Y. F.; Wang, F.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J.-X. Carbon 2017, 114, 608.  doi: 10.1016/j.carbon.2016.12.064

    8. [8]

      Yu, L. T.; Liu, J.; Xu, X. J.; Zhang, L. G.; Hu, R. Z.; Liu, J. W.; Yang, L. C.; Zhu, M. ACS Appl. Mater. Interfaces 2017, 9, 2516.  doi: 10.1021/acsami.6b14233

    9. [9]

      Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. Chem. Rev. 2013, 113, 5364.  doi: 10.1021/cr3001884

    10. [10]

      McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966.  doi: 10.1002/adma.201301795

    11. [11]

      Du, J.; Lin, N.; Qian, Y. T. Acta Chim. Sinica 2017, 75, 147.  doi: 10.3969/j.issn.0253-2409.2017.02.003

    12. [12]

      Ye, Y.; Zhu, J. Y.; Yao, Y. N.; Wang, Y. G.; Wu, P.; Tang, Y. W.; Zhou, Y. M.; Lu, T. H. Acta Chim. Sinica 2015, 73, 151.
       

    13. [13]

      Luo, F.; Zheng, J. Y.; Chu, G.; Liu, B. N.; Zhang, S. L.; Li, H.; Chen, L. Q. Acta Chim. Sinica 2015, 73, 808.
       

    14. [14]

      Wang, L.; Zhao, D. D.; Liu, X.; Yu, P.; Fu, H. G. Acta Chim. Sinica 2017, 75, 231.  doi: 10.7503/cjcu20160577

    15. [15]

      Lyv, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013.
       

    16. [16]

      Yang, Y. Q.; Zhang, Q.; Zhang, S. B.; Li, S. H. Polymer 2013, 54, 5698.  doi: 10.1016/j.polymer.2013.08.039

    17. [17]

      Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Chem. Soc. Rev. 2013, 42, 8012.  doi: 10.1039/c3cs60160a

    18. [18]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.  doi: 10.1016/j.progpolymsci.2011.09.002

    19. [19]

      Xu, J. W.; Zhang, C.; Wang, X. C.; Jiang, J. X.; Wang, F. Acta Chim. Sinica 2017, 75, 473.
       

    20. [20]

      Xu, J. W.; Zhang, C.; Qiu, Z. X.; Lei, Z. Y.; Chen, B.; Jiang, J.-X.; Wang, F. Macromol. Chem. Phys. 2017, 218, 1700275.  doi: 10.1002/macp.v218.22

    21. [21]

      Shu, G.; Zhang, C.; Li, Y. D.; Jiang, J. X.; Wang, X. C.; Li, H.; Wang, F. J. Appl. Polym. Sci. 2017, 10, 45907.

    22. [22]

      Zhang, H. J.; Zhang, C.; Wang, X. C.; Qiu, Z. X.; Liang, X. M.; Chen, B.; Xu, J. W.; Jiang, J.-X.; Li, Y. D.; Li, H.; Wang, F. RSC Adv. 2016, 6, 113826.  doi: 10.1039/C6RA20765K

    23. [23]

      Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2015, 137, 3265.  doi: 10.1021/ja511552k

    24. [24]

      Jiang, J. X.; Wang, C.; Laybourn, A.; Hasell, T.; Clowes, R.; Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2011, 50, 1072.  doi: 10.1002/anie.v50.5

    25. [25]

      Jiang, J.-X.; Li, Y. Y.; Wu, X. F.; Xiao, J. L.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.  doi: 10.1021/ma402104h

    26. [26]

      Xu, Y. F.; Mao, N.; Feng, S.; Zhang, C.; Wang, F.; Chen, Y.; Zeng, J. H.; Jiang, J.-X. Macromol. Chem. Phys. 2017, 218, 1700049.  doi: 10.1002/macp.v218.14

    27. [27]

      Xu, Y. F.; Zhang, C.; Mu, P.; Mao, N.; Wang, X.; He, Q.; Wang, F.; Jiang, J.-X. Sci. China:Chem. 2017, 60, 1075.  doi: 10.1007/s11426-017-9077-0

    28. [28]

      Wang, X. Y.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J. H.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.  doi: 10.1021/acsami.7b05345

    29. [29]

      Xu, F.; Chen, X.; Tang, Z. W.; Wu, D. C.; Fu, R. W.; Jiang, D. L. Chem. Commun. 2014, 50, 4788.  doi: 10.1039/C4CC01002G

    30. [30]

      Kou, Y.; Xu, Y. H.; Guo, Z. Q.; Jiang, D. L. Angew. Chem. Int. Ed. 2011, 50, 8753.  doi: 10.1002/anie.201103493

    31. [31]

      Muench, S.; Wild, A.; Friebe, C.; Haupler, B.; Janoschka, T.; Schubert, U. S. Chem. Rev. 2016, 116, 9438.  doi: 10.1021/acs.chemrev.6b00070

    32. [32]

      Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B.; Li, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 5366.  doi: 10.1021/acsami.5b12370

    33. [33]

      Zhang, S. L.; Huang, W.; Hu, P.; Huang, C. S.; Shang, C. Q.; Zhang, C. J.; Yang, R. Q.; Cui, G. L. J. Mater. Chem. A 2015, 3, 1896.  doi: 10.1039/C4TA06058J

    34. [34]

      Bai, L. Y.; Gao, Q.; Zhao, Y. L. J. Mater. Chem. A 2016, 4, 14106.  doi: 10.1039/C6TA06449C

    35. [35]

      Haupler, B.; Burges, R.; Friebe, C.; Janoschka, T.; Schmidt, D.; Wild, A.; Schubert, U. S. Macromol. Rapid Commun. 2014, 35, 1367.  doi: 10.1002/marc.v35.15

    36. [36]

      Yao, M.; Senoh, H.; Sakai, T.; Kiyobayashi, T. J. Power Sources 2012, 202, 364.  doi: 10.1016/j.jpowsour.2011.11.035

    37. [37]

      Su, C.; He, H. H.; Xu, L. H.; Zhao, K.; Zheng, C. C.; Zhang, C. J. Mater. Chem. A 2017, 5, 2701.  doi: 10.1039/C6TA10127E

    38. [38]

      Zhang, C.; He, Y. W.; Mu, P.; Wang, X.; He, Q.; Chen, Y.; Zeng, J. H.; Wang, F.; Xu, Y. H.; Jiang, J.-X. Adv. Funct. Mater. 2017, 27, 1705432.

    39. [39]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.  doi: 10.1002/anie.v46:45

    40. [40]

      Weber, J.; Antonietti, M.; Thomas, A. Macromolecules 2008, 41, 2880.  doi: 10.1021/ma702495r

    41. [41]

      Su, Y. Z.; Liu, Y. X.; Liu, P.; Wu, D. Q.; Zhuang, X. D.; Zhang, F.; Feng, X. L. Angew. Chem. Int. Ed. 2015, 54, 1812.  doi: 10.1002/anie.201410154

    42. [42]

      Zhu, L. M.; Cao, X. Y. Mater. Lett. 2015, 150, 16.  doi: 10.1016/j.matlet.2015.02.129

    43. [43]

      Xiang, J.; Burges, R.; Häupler, B.; Wild, A.; Schubert, U. S.; Ho, C.-L.; Wong, W.-Y. Polymer 2015, 68, 328.  doi: 10.1016/j.polymer.2015.01.054

    44. [44]

      Xiong, J. Q.; Wei, Z.; Xu, T.; Zhang, Y.; Xiong, C. X.; Dong, L. J. Polymer 2017, 130, 135.  doi: 10.1016/j.polymer.2017.10.004

    45. [45]

      Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2017, 139, 4258.  doi: 10.1021/jacs.7b02648

    46. [46]

      Wang, Y.; Qu, Q. T.; Liu, G.; Battaglia, V. S.; Zheng, H. H. Nano. Energy 2017, 39, 200.

    47. [47]

      Nauroozi, D.; Pejic, M.; Schwartz, P.-O.; Wachtler, M.; Bäuerle, P. RSC Adv. 2016, 6, 111350.  doi: 10.1039/C6RA24064J

    48. [48]

      Zhao, R. R.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Electroanal. Chem. 2013, 688, 93.  doi: 10.1016/j.jelechem.2012.07.019

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(34)
  • Abstract views(1894)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return