Citation: Song Hui, Liu Chao, Wu Yijun, Hu Honggang, Yan Fang. Efficient Synthesis of Bicyclic Peptide BI-32169 Utilizing a Novel Aryl Boronate Ester Protecting Group[J]. Acta Chimica Sinica, ;2018, 76(2): 95-98. doi: 10.6023/A17100473 shu

Efficient Synthesis of Bicyclic Peptide BI-32169 Utilizing a Novel Aryl Boronate Ester Protecting Group

  • Corresponding author: Hu Honggang, hhu66@smmu.edu.com Yan Fang, Yanfang303@163.com
  • Received Date: 30 October 2017
    Available Online: 22 February 2017

    Fund Project: the Natural Science Fund of Shandong Province and the National Natural Science Foundation of China ZR2016HL57the Natural Science Fund of Shandong Province and the National Natural Science Foundation of China 81700167Project supported by the Natural Science Fund of Shandong Province and the National Natural Science Foundation of China (Nos. ZR2016HL57, 81700167)

Figures(7)

  • Developed as novel protecting groups for solid-phase peptide synthesis, aryl boronate ester based amino acid building blocks exhibit many advantages over Alloc/Allyl groups and other traditional protecting groups due to their environmental-friendly deprotection conditions and high deprotection efficiency. These protecting groups have been found to exhibit all of the chemical properties compatible to the standard Fmoc(9-Fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and to be orthogonal to other protection groups, such as tBu (tert-butyl), pbf (2, 2, 4, 6, 7-penta-methyldihydroben zofuran-5-sulfonyl), Trt (trityl) and Boc (t-Butyloxy carbonyl). In this paper, the aryl bronate ester protected Asp was employed to synthesize a lactam-bridged bicyclic peptide, BI-32169 ([Gly-Leu-Pro-Trp-Gly-Cys-Pro-Ser-Asp]-Ile-Pro-Gly-Trp-Asn-Thr-Pro-Trp-Ala-Cys), which is a human glucagon receptor peptide inhibitor, via on-resin cyclization and solution phase oxidative folding. First of all, the Fmoc-Asp(pDobb)-OH (pDobb, dihydroxyborylbenzyl pinacol ester) was successfully synthesized via esterification between Fmoc-Asp-OtBu and 4-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) followed by deprotection of tBu with trifluoroacetic acid. Subsequently, the fully protected linear peptide was obtained by incorporating Fmoc-Asp(pDobb)-OH into peptide backbone through standard SPPS using HCTU/DIPEA as the coupling reagent and base. The following release of pDobb group on Asp side chain and deprotection of the N-terminal Fmoc group on solid support provided the linear peptide containing a free Asp residue and an N-terminal amino group. The critical cyclization step was accomplished on resin using PyAOP/HOAt/NMM, followed by resin cleavage and global deprotection with TFA/Phenol/Water/TIPS to give the monocyclic peptide. Finally, the intramolecular disulfide bond was formed through oxidative folding in an aqueous environment with 10% DMSO to provide the final bicyclic target, BI-32169, with a total yield about 27%. In summary, the human glucagon receptor peptide inhibitor BI-32169 was successfully synthesized utilizing an aryl boronate ester based amino acid building block via an on-resin cyclization and solution phase oxidative folding strategy. This convenient and efficient synthetic route could provide a way for chemical total synthesis of BI-32169 and other analogues.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Bringer, J.; Mirouze, J.; Marchal, G. Diabetes 1981, 30, 851.  doi: 10.2337/diab.30.10.851

    4. [4]

      (a) Ahn, J. ; Medeiros, M. ; Trivedi, D. ; Hruby, V. J. J. Med. Chem. 2001, 44, 1372. (b) Kodra, J. T. ; Jorgensen, A. S. ; Andersen, B. ; Behrens, C. ; Brand, C. L. ; Christensen, I. T. ; Guldbrandt, M. ; Jeppesen, C. B. ; Knudsen, L. B. ; Madsen, P. ; Nishimura, E. ; Sams, C. ; Sidelmann, U. G. ; Pedersen, R. A. ; Lynn, F. C. ; Lau, J. J. Med. Chem. 2008, 51, 5387.

    5. [5]

      (a) Potterat, O. ; Wagner, K. ; Gemmecker, G. J. Nat. Prod. 2004, 67, 1528. (b) Mazur, S. ; Jayalekshmy, P. J. Am. Chem. Soc. 2002, 101, 677.

    6. [6]

      Knappe, T. A.; Linne, U.; Xie, X. FEBS Lett. 2010, 584, 785.  doi: 10.1016/j.febslet.2009.12.046

    7. [7]

    8. [8]

      (a) Lagarias, J. G. ; Houghter, R. A. ; Rapoport, H. J. Am. Chem. Soc. 1978, 100, 8202. (b) Iacquier, R. ; Lazaro, R. ; Raniriseheno, H. J. Pept. Prot. Res. 1987, 30, 22. (c) Mazur, S. ; Jayalekshmy, P. J. Am. Chem. Soc. 2002, 101, 677.

    9. [9]

      (a) Goncalves, V. ; Gautier, B. ; Garbay, C. ; Vidal, M. ; Inguimbert, N. J. Pept. Sci. 2008, 14, 767. (b) Huang, Y. -C. ; Li, Y. -M. ; Chen, Y. ; Pan, M. ; Li, Y. -T. ; Yu, L. ; Guo, Q. -X. ; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 4858. (c) De, V. M. ; Sinnaeve, D. ; Van, B. J. ; Coenye, T. ; Martins, J. C. ; Madder, A. Chemistry 2014, 20, 7766. (d) Hill, T. A. ; Shepherd, N. E. ; Diness, F. ; Fairlie, D. P. Angew. Chem., Int. Ed. 2014, 53, 13020. (e) Pan, M. ; Gao, S. ; Zheng, Y. ; Tan, X. -D. ; Lan. H. ; Tan, X. -L. ; Sun, D. -M. ; Lu, L. -N. ; Wang, T. ; Zheng, Q. -Y. ; Huang, Y. -C. ; Wang, J. -W. ; Liu, L. J. Am. Chem. Soc. 2016, 138, 7429. (f) Tang, S. ; Liang, L. -J. ; Si, Y. -Y. ; Gao, S. ; Wang, J. -X. ; Liang, J. ; Mei, Z. -Q. ; Zheng, J. -S. ; Liu, L. Angew. Chem., Int. Ed. 2017, 56, 13333.

    10. [10]

      (a) Wiley, R. A. ; Rich, D. H. Med. Res. Rev. 1993, 13, 327. (b) Fairlie, D. P. ; Abenante, G. ; March, D. R. Curr. Med. Chem. 1995, 2, 654. (c) Bursavich, M. G. ; Rich, D. H. J. Med. Chem. 2002, 45, 541. (d) Grauer, A. ; K nig, B. Eur. J. Org. Chem. 2009, 30, 5099. (e) Hill, T. A. ; Shepherd, N. E. ; Diness, F. ; Fairlie, D. P. Angew. Chem., Int. Ed. 2014, 53, 13020. (f) Pelay-Gimeno, M. ; Glas, A. ; Koch, O. ; Grossmann, T. N. Angew. Chem., Int. Ed. 2015, 54, 8896.

    11. [11]

      (a) Liu, C. ; Zou, Y. ; Song, H. ; Jiang, Y. -Y. ; Hu, H. -G. Eur. J. Org. Chem. 2017, 39, 5916. (b) Li, J. -B. ; Li, Y. -Y. ; He, Q. -Q. ; Li, Y. -M. ; Li, H. -T. ; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.

    12. [12]

      (a) Lear, S. ; Munshi, T. ; Hudson, A. S. ; Hatton, C. ; Clardy, J. ; Mosely, J. A. ; Bull, T. J. ; Sit, C. S. ; Cobb, S. L. Org. Biomol. Chem. 2016, 14, 4534. (b) Gon alves, M. ; Estieu-Gionnet, K. ; La n, G. ; Bayle, M. Tetrahedron 2005, 61, 7789.

    13. [13]

      (a) Guo, Y. ; Liu, C. ; Song, H. ; Wang, F. -L. ; Zou, Y. ; Wu, Q. -Y. ; Hu, H. -G. RSC Adv. 2017, 7, 2110. (b) Cui, H. -K. ; Guo, Y. ; He, Y. ; Wang, F. -L. ; Chang, H. -N. ; Wang, Y. -J. ; Wu, F. -M. ; Tian, C. -L. ; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 9558. (c) Guo, Y. ; Sun, D. -M. ; Wang, F. -L. ; He, Y. ; Liu, L. ; Tian, C. -L. Angew. Chem., Int. Ed. 2015, 54, 14276.

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    8. [8]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    9. [9]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    15. [15]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(9)
  • Abstract views(2069)
  • HTML views(542)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return