Citation: Li Meng, Lin Wei-Bin, Fang Lei, Chen Chuan-Feng. Recent Progress on Circularly Polarized Luminescence of Chiral Organic Small Molecules[J]. Acta Chimica Sinica, ;2017, 75(12): 1150-1163. doi: 10.6023/A17090440 shu

Recent Progress on Circularly Polarized Luminescence of Chiral Organic Small Molecules

  • Corresponding author: Chen Chuan-Feng, cchen@iccas.ac.cn
  • Received Date: 28 September 2017
    Available Online: 1 December 2017

    Fund Project: the National Natural Science Foundation of China 21602224the Strategic Priority Research Program of Chinese Academy of Sciences XDB12010400the National Natural Science Foundation of China 21572233the National Natural Science Foundation of China 51373180Project supported by the National Natural Science Foundation of China (Nos. 21602224, 51373180, 21572233), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB12010400)

Figures(28)

  • Circularly polarized luminescence (CPL) not only can reflect the excited state structure information of chiral system, but also has wide potential applications in 3D display, communication of spin information, information storage and processing, CPL laser and biological probe. Consequently, more and more attention and interests have been attracted into this field, which turns to be one of the most hot topics in organic luminescence materials in recent years. In this review, recent progress on the chiral organic small molecules with CPL properties is summarized. First, CPL concept and earlier studies of CPL and organic small molecules with CPL properties are briefly introduced. Then, chiral organic small molecules with CPL properties are classified into four types of central chirality, axial chirality, planar chirality, and helical chirality, and their progresses in recent years are systematically described, respectively. Among the small molecular systems with different types of chirality, those ones based on the biaryl skeleton and helicene derivatives show excellent CPL properties, and they could also be controlled or switched by anions, protons and others. Moreover, it should be paid attention to the applications of aggregation induced effect (AIE) and supramolecular chemistry for the chiral organic small molecules to obtain better CPL property. Finally, a conclusion and perspective on CPL materials based on chiral small molecules is provided.
  • 加载中
    1. [1]

      (a) Brittain, H. G. Chirality 1996, 8, 357;(b) Riehl, J. P.; Richardson, F. S. Chem. Rev. 1986, 86, 1.

    2. [2]

      Muller, G. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials, Ed.: de Bettencourt-Dias, A., Wiley, Hoboken, 2014, pp. 77~124.

    3. [3]

      Yang, Y.; da Costa, R. C.; Smilgies, D.-M.; Campbell, A. J.; Fuchter, M. J. Adv. Mater. 2013, 25, 2624.  doi: 10.1002/adma.201204961

    4. [4]

      Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Appl. Phys. Lett. 2011, 98, 162508.  doi: 10.1063/1.3582917

    5. [5]

      Yang, Y.; da Costa, R. C.; Fuchter, M. J.; Campbell, A. J. Nat. Photon. 2013, 7, 634.  doi: 10.1038/nphoton.2013.176

    6. [6]

      Jiménez, J.; Cerdán, L.; Moreno, F.; Maroto, B. L.; García-Moreno, I.; Lunkley, J. L.; Muller, G.; de la Moya, S. J. Phys. Chem. C 2017, 121, 5287.  doi: 10.1021/acs.jpcc.7b00654

    7. [7]

      (a) Muller, G. Dalton Trans. 2009, 9692;(b) Hassey, R.; Swain, E. J.; Hammer, N. I.; Venkataraman, D.; Barnes, M. D. Science 2006, 314, 1437.

    8. [8]

      Sanchez-Carnerero, E. M.; Agarrabeitia, A. R.; Moreno, F.; Maroto, B. L.; Muller, G.; Ortiz, M. J.; de la Moya, S. Chem. Eur. J. 2015, 21, 13488.  doi: 10.1002/chem.v21.39

    9. [9]

      Lunkley, J. L.; Shirotani, D.; Yamanari, K.; Kaizaki, S.; Muller, G. J. Am. Chem. Soc. 2008, 130, 13814.  doi: 10.1021/ja805681w

    10. [10]

      (a) Carr, R.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41, 7673;(b) Aspinall, H. C. Chem. Rev. 2002, 102, 1807;(c) Bunzli, J. C. G.; Piguet, C. Chem. Rev. 2002, 102, 1897;(d) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Chem. Rev. 2014, 114, 4496.

    11. [11]

      (a) Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Chem. Rev. 2016, 116, 13752;(b) Watanabe, K.; Akagi, K. Sci. Technol. Adv. Mater. 2014, 15, 044203.

    12. [12]

      Emeis, C. A.; Oosterhoff, L. J. Chem. Phys. Lett. 1967, 1, 129.  doi: 10.1016/0009-2614(67)85007-3

    13. [13]

      Barnett, C. J.; Drake, A. F.; Mason, S. F. Bull. Soc. Chim. Belg. 1979, 88, 853.

    14. [14]

      Kawai, T.; Kawamura, K.; Tsumatori, H.; Ishikawa, M.; Naito, M.; Fujiki, M.; Nakashima, T. ChemPhysChem 2007, 8, 1465.  doi: 10.1002/(ISSN)1439-7641

    15. [15]

      Kumar, J.; Nakashima, T.; Kawai, T. J. Phys. Chem. Lett. 2015, 6, 3445.  doi: 10.1021/acs.jpclett.5b01452

    16. [16]

      Gossauer, A.; Fehr, F.; Nydegger, F.; Stöckli-Evans, H. J. Am. Chem. Soc. 1997, 119, 1599.  doi: 10.1021/ja961883q

    17. [17]

      Amako, T.; Nakabayashi, K.; Mori, T.; Inoue, Y.; Fujiki, M.; Imai, Y. Chem. Commun. 2014, 50, 12836.  doi: 10.1039/C4CC04228J

    18. [18]

      Ito, S.; Ikeda, K.; Nakanishi, S.; Imai, Y.; Asami, M. Chem. Commun. 2017, 53, 6323.  doi: 10.1039/C7CC01351E

    19. [19]

      Gobo, Y.; Yamamura, M.; Nakamura, T.; Nabeshima, T. Org. Lett. 2016, 18, 2719.  doi: 10.1021/acs.orglett.6b01237

    20. [20]

      (a) Kumar, J.; Nakashima, T.; Tsumatori, H.; Mori, M.; Naito, M.; Kawai, T. Chem. Eur. J. 2013, 19, 14090;(b) Kumar, J.; Nakashima, T.; Kawai, T. Langmuir 2014, 30, 6030.

    21. [21]

      Sheng, Y.; Ma, J.; Liu, S.; Wang, Y.; Zhu, C.; Cheng, Y. Chem. Eur. J. 2016, 22, 9519.  doi: 10.1002/chem.201600891

    22. [22]

      (a) Liu, M.; Zhang, L.; Wang, T. Chem. Rev. 2015, 115, 7304;(b) Zhang, L.; Wang, T.; Shen, Z.; Liu, M. Adv. Mater. 2016, 28, 1044.

    23. [23]

      Ikeda, T.; Masuda, T.; Hirao, T.; Yuasa, J.; Tsumatori, H.; Kawai, T.; Haino, T. Chem. Commun. 2012, 48, 6025.  doi: 10.1039/c2cc31512b

    24. [24]

      Liu, J.; Su, H.; Meng, L.; Zhao, Y.; Deng, C.; Ng, J. C. Y.; Lu, P.; Faisal, M.; Lam, J. W. Y.; Huang, X.; Wu, H.; Wong, K. S.; Tang, B. Z. Chem. Sci. 2012, 3, 2737.  doi: 10.1039/c2sc20382k

    25. [25]

      Li, H.; Cheng, J.; Deng, H.; Zhao, E.; Shen, B.; Lam, J. W. Y.; Wong, K. S.; Wu, H.; Li, B. S.; Tang, B. Z. J. Mater. Chem. C 2015, 3, 2399.

    26. [26]

      Ye, Q.; Zhu, D.; Zhang, H.; Lu, X.; Lu, Q. J. Mater. Chem. C 2015, 3, 6997.  doi: 10.1039/C5TC00987A

    27. [27]

      Liu, S.; Li, F.; Wang, Y.; Li, X.; Zhu, C.; Cheng, Y. J. Mater. Chem. C 2017, 5, 6030.  doi: 10.1039/C7TC01371J

    28. [28]

      Yang, D.; Duan, P.; Zhang, L.; Liu, M. Nat. Commun. 2017, 8, 15727.  doi: 10.1038/ncomms15727

    29. [29]

      Kimoto, T.; Tajima, N.; Fujiki, M.; Imai, Y. Chem. Asian J. 2012, 7, 2836.  doi: 10.1002/asia.201200725

    30. [30]

      (a) Kitayama, Y.; Nakabayashi, K.; Wakabayashi, T.; Tajima, N.; Fujiki, M.; Imai, Y. RSC Adv. 2015, 5, 410;(b) Kitayama, Y.; Amako, T.; Suzuki, N.; Fujiki, M.; Imai, Y. Org. Biomol. Chem. 2014, 12, 4342.

    31. [31]

      Kono, Y.; Nakabayashi, K.; Kitamura, S.; Kuroda, R.; Fujiki, M.; Imai, Y. Tetrahedron 2015, 71, 3985.  doi: 10.1016/j.tet.2015.04.048

    32. [32]

      Sanchez-Carnerero, E. M.; Moreno, F.; Maroto, B. L.; Agarrabeitia, A. R.; Ortiz, M. J.; Vo, B. G.; Muller, G.; de la Moya, S. J. Am. Chem. Soc. 2014, 136, 3346.  doi: 10.1021/ja412294s

    33. [33]

      Zhang, S.; Wang, Y.; Meng, F.; Dai, C.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 9014.  doi: 10.1039/C5CC01994J

    34. [34]

      Sheng, Y.; Shen, D.; Zhang, W.; Zhang, H.; Zhu, C.; Cheng, Y. Chem. Eur. J. 2015, 21, 13196.  doi: 10.1002/chem.201502193

    35. [35]

      Wang, Y.; Li, X.; Li, F.; Sun, W.-Y.; Zhu, C.; Cheng, Y. Chem. Commun. 2017, 53, 7505.  doi: 10.1039/C7CC04363E

    36. [36]

      Maeda, H.; Bando, Y.; Shimomura, K.; Yamada, I.; Naito, M.; Nobusawa, K.; Tsumatori, H.; Kawai, T. J. Am. Chem. Soc. 2011, 133, 9266.  doi: 10.1021/ja203206g

    37. [37]

      (a) Tsumatori, H.; Nakashima, T.; Kawai, T. Org. Lett. 2010, 12, 2362;(b) Kumar, J.; Tsumatori, H.; Yuasa, J.; Kawai, T.; Nakashima, T. Angew. Chem. Int. Ed. 2015, 54, 5943.

    38. [38]

      Langhals, H.; Hofer, A.; Bernhard, S.; Siegel, J. S.; Mayer, P. J. Org. Chem. 2011, 76, 990.  doi: 10.1021/jo102254a

    39. [39]

      Kogel, J. F.; Kusaka, S.; Sakamoto, R.; Iwashima, T.; Tsuchiya, M.; Toyoda, R.; Matsuoka, R.; Tsukamoto, T.; Yuasa, J.; Kitagawa, Y.; Kawai, T.; Nishihara, H. Angew. Chem. Int. Ed. 2016, 55, 1377.  doi: 10.1002/anie.201509411

    40. [40]

      (a) Morisaki, Y.; Gon, M.; Sasamori, T.; Tokitoh, N.; Chujo, Y. J. Am. Chem. Soc. 2014, 136, 3350;(b) Gon, M.; Morisaki, Y.; Chujo, Y. J. Mater. Chem. C 2015, 3, 521.

    41. [41]

      Morisaki, Y.; Inoshita, K.; Chujo, Y. Chem. Eur. J. 2014, 20, 8386.  doi: 10.1002/chem.201402930

    42. [42]

      Gon, M.; Morisaki, Y.; Chujo, Y. Chem. Commun. 2017, 53, 8304.  doi: 10.1039/C7CC03615A

    43. [43]

      Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463.  doi: 10.1021/cr200087r

    44. [44]

      Field, J. E.; Muller, G.; Riehl, J. P.; Venkataraman, D. J. Am. Chem. Soc. 2003, 125, 11808.  doi: 10.1021/ja035626e

    45. [45]

      Sawada, Y.; Furumi, S.; Takai, A.; Takeuchi, M.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2012, 134, 4080.  doi: 10.1021/ja300278e

    46. [46]

      Nakamura, K.; Furumi, S.; Takeuchi, M.; Shibuya, T.; Tanaka, K. J. Am. Chem. Soc. 2014, 136, 5555.  doi: 10.1021/ja500841f

    47. [47]

      Oyama, H.; Nakano, K.; Harada, T.; Kuroda, R.; Naito, M.; Nobusawa, K.; Nozaki, K. Org. Lett. 2013, 15, 2104.  doi: 10.1021/ol4005036

    48. [48]

      Goto, K.; Yamaguchi, R.; Hiroto, S.; Ueno, H.; Kawai, T.; Shinokubo, H. Angew. Chem. Int. Ed. 2012, 51, 10333  doi: 10.1002/anie.201204863

    49. [49]

      Katayama, T.; Nakatsuka, S.; Hirai, H.; Yasuda, N.; Kumar, J.; Kawai, T.; Hatakeyama, T. J. Am. Chem. Soc. 2016, 138, 5210.  doi: 10.1021/jacs.6b01674

    50. [50]

      Sakai, H.; Kubota, T.; Yuasa, J.; Araki, Y.; Sakanoue, T.; Takenobu, T.; Wada, T.; Kawai, T.; Hasobe, T. J. Phys. Chem. C 2016, 120, 7860.  doi: 10.1021/acs.jpcc.6b01344

    51. [51]

      Shen, C.; Srebro-Hooper, M.; Jean, M.; Vanthuyne, N.; Toupet, L.; Williams, J. A. G.; Torres, A. R.; Riives, A. J.; Muller, G.; Autschbach, J.; Crassous, J. Chem. Eur. J. 2017, 23, 407.  doi: 10.1002/chem.v23.2

    52. [52]

      Sakai, H.; Shinto, S.; Kumar, J.; Araki, Y.; Sakanoue, T.; Takenobu, T.; Wada, T.; Kawai, T.; Hasobe, T. J. Phys. Chem. C 2015, 119, 13937.  doi: 10.1021/acs.jpcc.5b03386

    53. [53]

      Yamamoto, Y.; Sakai, H.; Yuasa, J.; Araki, Y.; Wada, T.; Sakanoue, T.; Takenobu, T.; Kawai, T.; Hasobe, T. J. Phys. Chem. C 2016, 120, 7421.  doi: 10.1021/acs.jpcc.6b01123

    54. [54]

      Sakai, H.; Kubota, T.; Yuasa, J.; Araki, Y.; Sakanoue, T.; Takenobu, T.; Wada, T.; Kawai, T.; Hasobe, T. Org. Biomol. Chem. 2016, 14, 6738.  doi: 10.1039/C6OB00937A

    55. [55]

      Otani, T.; Tsuyuki, A.; Iwachi, T.; Someya, S.; Tateno, K.; Kawai, H.; Saito, T.; Kanyiva, K. S.; Shibata, T. Angew. Chem. Int. Ed. 2017, 56, 3906  doi: 10.1002/anie.201700507

    56. [56]

      Kaseyama, T.; Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi, M. Angew. Chem. Int. Ed. 2011, 50, 3684.  doi: 10.1002/anie.v50.16

    57. [57]

      (a) Shen, C.; Anger, E.; Srebro, M.; Vanthuyne, N.; Deol, K. K.; Jefferson, T. D., Jr.; Muller, G.; Williams, J. A. G.; Toupet, L.; Roussel, C.; Autschbach, J.; Reau, R.; Crassous, J. Chem. Sci. 2014, 5, 1915;(b) Saleh, N.; Srebro, M.; Reynaldo, T.; Vanthuyne, N.; Toupet, L.; Chang, V. Y.; Muller, G.; Williams, J. A. G.; Roussel, C.; Autschbach, J.; Crassous, J. Chem.Commun. 2015, 51, 3754.

    58. [58]

      Hellou, N.; Srebro-Hooper, M.; Favereau, L.; Zinna, F.; Caytan, E.; Toupet, L.; Dorcet, V.; Jean, M.; Vanthuyne, N.; Williams, J. A. G.; Di Bari, L.; Autschbach, J.; Crassous, J. Angew. Chem. Int. Ed. 2017, 56, 8236.  doi: 10.1002/anie.v56.28

    59. [59]

      Shen, Y.; Lu, H.-Y.; Chen, C.-F. Angew. Chem. Int. Ed. 2014, 53, 4648.  doi: 10.1002/anie.201400486

    60. [60]

      Li, M.; Lu, H.-Y.; Zhang, C.; Shi, L.; Tang, Z.; Chen, C.-F. Chem. Commun. 2016, 52, 9921.  doi: 10.1039/C6CC04674F

    61. [61]

      He, D.-Q.; Lu, H.-Y.; Li, M.; Chen, C.-F. Chem. Commun. 2017, 53, 6093.  doi: 10.1039/C7CC01882G

    62. [62]

      Fang, L.; Li, M.; Lin, W.-B.; Shen, Y.; Chen, C.-F. J. Org. Chem. 2017, 82, 7402.  doi: 10.1021/acs.joc.7b01087

    63. [63]

      Lin, W.-B.; Li, M.; Fang, L.; Shen, Y.; Chen, C.-F. Chem. Asian J. 2017, 12, 86.  doi: 10.1002/asia.v12.1

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    7. [7]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(742)
  • Abstract views(14250)
  • HTML views(5537)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return