Citation: Hu Zhengli, Du Jihui, Ying Yilun, Peng Yueyi, Cao Chan, Long Yi-Tao. Single-Molecule Analysis of Colorectal Cancer-associated MicroRNAs via a Biological Nanopore[J]. Acta Chimica Sinica, ;2017, 75(11): 1087-1090. doi: 10.6023/A17090433 shu

Single-Molecule Analysis of Colorectal Cancer-associated MicroRNAs via a Biological Nanopore

  • Corresponding author: Long Yi-Tao, ytlong@ecust.edu.cn
  • Received Date: 22 September 2017
    Available Online: 7 November 2017

    Fund Project: Project supported by the National Key R & D Program of China (No. 2017YFC0906500), the National Natural Science Foundation of China (No. 21505043), Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-02-E00023) and the Fundamental Research Funds for the Central Universities (Nos. 222201714012, 222201718001, 222201717003)the Fundamental Research Funds for the Central Universities 222201714012Innovation Program of Shanghai Municipal Education Commission 2017-01-07-00-02-E00023the Fundamental Research Funds for the Central Universities 222201718001the National Key R & D Program of China 2017YFC0906500the National Natural Science Foundation of China 21505043the Fundamental Research Funds for the Central Universities 222201717003

Figures(3)

  • MicroRNAs (miRNAs), 18~22 nucleotides in length, are a class of single-strand noncoding short RNAs and have been used as biomarkers for diagnosis and prognosis of cancers. Herein, an α-hemolysin (α-HL) nanopore was adapted for the colorectal cancer-associated miRNAs analysis, with the merits of high-throughput, ultra-sensitivity and no requirements of amplification/labelling. DNA probes, consisting of a signal tag in each end and a response element in the middle section, were designed. The response element could be well-matched with miRNA and utilized for specific recognition of the target miRNA, while the signal tag increased the capture rate of the miRNA·probe complex. Due to the poor stacking of thymine residues, poly(dT)n need to overcome a high entropic barrier when traversing through the α-HL nanopore confined space, resulting in distinct double-level blocked events, which contributes to the visualized differences in signal shape and prolonged duration. Thus, poly(dT)n was selected as the signal tag of probe. Added in the cis side of α-HL, miRNA·probe was forced to traverse across the nanopore confined space under the potential of 140 mV through a pair of Ag/AgCl electrodes (cis grounded). Typical three-stage blocked event was observed, reflecting the translocation process:capture and dissociation of miRNA·probe, translocation of probe, temporarily residence and translocation of miRNA. Stage 1 (S1) represented the process from capture of miRNA·probe complex to translocation of the entire probe. The typical blocked events of miRNA 92·probe 92 showed a two-level S1, where Level 1 (L1) with a current blockage of 0.57±0.01 was generated mainly by translocation of the poly(dT)40 signal tag. As the duration is associated with DNA length, probe 21 with smaller poly(dT)20 signal tag was designed to detect miRNA 21, resulting in a shorter L1 of miRNA 21·probe 21 whose duration (tD-L1) was 1/3 of that for miRNA 92·probe 92. As the signal shapes vary with DNA sequences, probe 16 with signal tag of poly(dC)40 was used to sense miRNA 16, with miRNA 16·probe 16 producing a different single-level S1 with miRNA 92·probe 92 and miRNA 21·probe 21. The statistical results demonstrated that the three kinds of miRNA·probe produced different durations for S1 (tD-S1), possibly indicating the differences in probe-α-HL interaction. Therefore, miRNA 92, miRNA 21 and miRNA 16 could be well identified by tD-L1 (signal shape) and tD-S1 (duration). Moreover, the serum sample have been tested. Hence, α-HL nanopore can be applied to build ultrasensitive single molecule biosensor for miRNA.
  • 加载中
    1. [1]

      Lu, J.; Getz, G.; Miska, E. A.; Alvarez-saavedra, E.; Lamb, J.; Peck, D.; Sweet-cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; Downing, J. R.; Jacks, T.; Horvitz, H. R.; Golub, T. R. Nature 2005, 435, 834.  doi: 10.1038/nature03702

    2. [2]

      Várallyay, E.; Burgyán, J.; Havelda, Z. Nature Protocols 2008, 3, 190.  doi: 10.1038/nprot.2007.528

    3. [3]

      Park, J. L.; Park, S. M.; Kwon, O. H.; Lee, H. C.; Kim, J. Y.; Seok, H. H.; Lee, W. S.; Lee, S. H.; Kim, Y. S.; Woo, K. M.; Kim, S. Y. Electrophoresis 2014, 35, 3062.  doi: 10.1002/elps.v35.21-22

    4. [4]

      Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Proc. Natl. Acad. Sci. 1996, 93, 13770.  doi: 10.1073/pnas.93.24.13770

    5. [5]

      Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734(in Chinese).
       

    6. [6]

      Wang, H.-Y.; Li, Y.; Qin, L.-X.; Heyman, A.; Shoseyov, O.; Willner, I.; Long, Y.-T.; Tian, H. Chem. Commun. 2013, 49, 1741.  doi: 10.1039/c3cc38939a

    7. [7]

      Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nat. Biotechnol. 2012, 30, 349.  doi: 10.1038/nbt.2171

    8. [8]

      Cao, C.; Ying, Y.-L.; Hu, Z.-L.; Liao, D.-F.; Tian, H.; Long, Y.-T. Nat. Nanotechnol. 2016, 11, 713.  doi: 10.1038/nnano.2016.66

    9. [9]

      Clarke, J.; Wu, H.-C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Nat. Nanotechnol. 2009, 4, 265.  doi: 10.1038/nnano.2009.12

    10. [10]

      Stefureac, R.; Long, Y.-T.; Kraatz, H.-B.; Howard, P.; Lee, J. S. Biochemistry 2006, 45, 9172.  doi: 10.1021/bi0604835

    11. [11]

      Sutherland, T. C.; Long, Y.-T.; Stefureac, R.-I.; Bediako-Amoa, I.; Kraatz, H.-B.; Lee, J. S. Nano Lett. 2004, 4, 1273.  doi: 10.1021/nl049413e

    12. [12]

      Wang, H.-Y.; Ying, Y.-L.; Li, Y.; Kraatz, H.-B.; Long, Y.-T. Anal. Chem. 2011, 83, 1746.  doi: 10.1021/ac1029874

    13. [13]

      Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44(in Chinese).
       

    14. [14]

      Ying, Y.-L.; Wang, H.-Y.; Sutherland, T. C.; Long, Y.-T. Small 2011, 7, 87.  doi: 10.1002/smll.v7.1

    15. [15]

      Meng, F.-N.; Yao, X.-Y.; Zhang, J.-J.; Ying, Y.-L.; Tian, H. ACS Sens. 2016, 1, 1398.  doi: 10.1021/acssensors.6b00575

    16. [16]

      Rauf, S.; Zhang, L.; Ali, A.; Liu, Y.; Li, J.-H. ACS Sens. 2017, 2, 227.  doi: 10.1021/acssensors.6b00627

    17. [17]

      Ying, Y.-L.; Long, Y.-T. Sci. China:Chem. 2017, 60, 1187.  doi: 10.1007/s11426-017-9082-5

    18. [18]

      Long, Y.-T.; Zhang, M. N. Sci. China Ser. B-Chem. 2009, 52, 731.  doi: 10.1007/s11426-009-0078-z

    19. [19]

      Wang, Y.; Zheng, D.-L.; Tan, Q.-L.; Wang, M. X.; Gu, L.-Q. Nat. Nanotechnol. 2011, 6, 668.  doi: 10.1038/nnano.2011.147

    20. [20]

      Song, L.-Z.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouauxt, J. E. Science 1996, 274, 1859.  doi: 10.1126/science.274.5294.1859

    21. [21]

      Ying, Y.-L.; Li, D.-W.; Li, Y.; Lee, J. S.; Long, Y.-T. Chem. Commun. 2011, 47, 5690.  doi: 10.1039/c0cc05787h

    22. [22]

      Xi, D.-M.; Shang, J.-Z.; Fan, E.-G.; You, J.-M.; Zhang, S.-S.; Wang, H. Anal. Chem. 2016, 88, 10540.  doi: 10.1021/acs.analchem.6b02620

    23. [23]

      Meller, A.; Branton, D. Electrophoresis 2002, 23, 2583.  doi: 10.1002/1522-2683(200208)23:16<2583::AID-ELPS2583>3.0.CO;2-H

    24. [24]

      Gu, Z.; Ying, Y.-L.; Cao, C.; He, P.-G.; Long, Y.-T. Anal. Chem. 2015, 87, 907.  doi: 10.1021/ac5028758

  • 加载中
    1. [1]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(37)
  • Abstract views(3302)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return